Physics, asked by pushpa7bisht, 1 month ago

A lead ball of mass 230g, when immersed into a measuring cylinder, the water level rises from 35 ml to 55 ml mark. Find (a) The volume of the ball (b) the density of ball in g/cubic cm​

Answers

Answered by TrustedAnswerer19
12

{\orange{ \boxed{ \boxed{ \begin{array}{cc}  \bf \to \: given \:  :  \\  \\ \sf \hookrightarrow \:  mass \: of \: the \:ball  \:  \: m = 230 \: g \\  \\ \sf \hookrightarrow \:  initial \: volume \: of \: water \: v_ 1 = 35\: ml \\  \\ \sf \hookrightarrow \:  final \: volume \: of \: water \:  \: v_2 = 55 \: ml \\  \\ \\   \sf \: a) \:volume \: of \: the \: ball \: v =  \: to \: find \\  \\  \sf \: b) \: density \: of \: the \:  ball \: d = to \: find \\  \\  \\   \:  \: \red{ \underline{ \sf \: solution}} \\  \\   \sf \: a) \\  \\ \: \sf \: volume \: of \: the \: ball\:  \: v = v_2 - v_1 \\  \\  = 65 - 40 \\  \\  = 25 \: ml  \\  \\  \sf \:  \therefore \: v = 25 \:  {cm}^{3}  \:  \:  \:  \:  \:  \:    \{\pink{   \because \: \sf \: 1 \: ml = 1 {cm}^{3}} \} \\  \\   \boxed{\therefore \: \sf \: volume \: of \: the \: ball \: v = 20 \: cm {}^{3} } \\  \\  \\   \sf \:b )  \\ \\  \sf \hookrightarrow \:  density \: of \: the \: object \:   = \: d \\  \\   \\  \bf \: we \: know \: that :  \\  \\  \blue{ \boxed{ \sf \: density(d) =  \frac{mass(m)}{volume(v)}}}  \\  \\ \sf \implies \:d =  \frac{m}{v} \\  \\   \sf \implies \:d=  \frac{230}{20}  \\  \\ \sf \implies \:d = 11.5 \: g {cm}^{ - 3}   \\  \\  \\ \pink{ \boxed{  \therefore \sf \: density \: of \: the \: object \:  \: d = 11.5 \: g {cm}^{ - 3}}} \end{array}}}}}

Similar questions