Physics, asked by kushurakhi, 2 months ago

a lens form a vitual image of twice the size of an object placed 15 cm away from the lens find the distanceof images from thelens and focal length of the lens?


hi guys
for evening

anyone solve this sum and send me the answer guys​

Answers

Answered by InfiniteSoul
52

\sf Given \begin {cases} & \sf { Distance \: of \: object \: =  u = \: -15 } \\ & \sf{ Magnification = m =  \: +2 } \end {cases}\\ \

⠀⠀⠀⠀

\sf To \: find \begin {cases} & \sf { Distance \: of \: image \: =  v = \: ?? } \\ & \sf{ Focal length = f \: ?? } \end {cases}\\ \

⠀⠀⠀⠀

 \bigstar\:{\underline{\sf From \: magnification \:formulae\::}}\\

⠀⠀⠀⠀

\star\;{\boxed{\sf{\pink{ Magnification = \dfrac{ Distance_{(image)}} { Distance_{(Object) } } }}}}\\

⠀⠀⠀⠀

 :\implies\sf 2 = \dfrac{ Distance_{(image)}} { -15 }\\

⠀⠀⠀⠀

 :\implies\sf Distance_{(image)} = 2 \times - 15 \\

⠀⠀

 : \implies \sf Distance_{(image)} = -30 cm \\

⠀⠀⠀⠀

 :\implies{\underline{\boxed{\frak{Image \: distance = -30 \: cm }}}}\;\bigstar\\

⠀⠀⠀⠀

⠀⠀⠀⠀

\bigstar\:{\underline{\sf Using\:Lens\:Formula\::}}\\

⠀⠀

 \star\;{\boxed{\sf{\pink{\dfrac{1}{f} = \dfrac{1}{v} - \dfrac{1}{u} }}}} \\

Where ;

⠀⠀⠀⠀

  • f = focal length

⠀⠀

  • u = object distance

⠀⠀⠀⠀

  • v = image distance

⠀⠀⠀⠀

⠀⠀

 :\implies\sf \dfrac{1}{f} = \dfrac{- 1}{30} - \dfrac{ - 1}{15}\\

⠀⠀⠀⠀

 :\implies\sf \dfrac{1}{f} = \dfrac{- 1}{30} + \dfrac{1}{15}\\

⠀⠀⠀⠀

:\implies\sf \dfrac{1}{f} = \dfrac{-1 + 2 }{30}\\

⠀⠀⠀⠀

 :\implies\sf \dfrac{1}{f} = \dfrac{1}{30}\\

⠀⠀⠀⠀

 :\implies{\underline{\boxed{\frak{\purple{Focal \: length = 30 cm }}}}}\;\bigstar\\

⠀⠀⠀⠀

\therefore\:{\underline{\sf{Focal \;length \: of \: the \:lens \; is \: \bf{ 30\: cm }}}}

⠀⠀⠀⠀

⠀⠀⠀⠀_____________________⠀


Anonymous: Great ! <( ̄︶ ̄)>
Answered by Anonymous
72

Answer:

Given :-

  • A lens from a virtual image of twice the size of an object placed 15 cm away from the lens.

To Find :-

  • What is the distance image from the lens.
  • What is the focal length of the lens.

Formula Used :-

\clubsuit Magnification Formula :

\longmapsto \sf\boxed{\bold{\pink{Magnification =\: \dfrac{Image\: Distance}{Object\: Distance}}}}\\

\clubsuit Lens Formula :

\longmapsto \sf \boxed{\bold{\pink{\dfrac{1}{f} =\: \dfrac{1}{v} - \dfrac{1}{u}}}}

where,

  • v = Image Distance
  • u = Object Distance
  • f = Focal Length

Solution :-

First, we have to find the image distance :

Given :

  • Magnification = 2
  • Object Distance = - 15 cm

According to the question by using the formula we get,

\implies \sf 2 =\: \dfrac{Image\: Distance}{- 15}

By doing cross multiplication we get,

\implies \sf Image\: Distance =\: - 15(2)

\implies \sf Image\: Distance =\: - 15 \times 2

\implies \sf\bold{\red{Image\: Distance =\: - 30\: cm}}

\therefore The distance image from the lens is - 30 cm .

\rule{150}{2}

Now, we have to find the focal length :

Given :

  • Image Distance = 30 cm
  • Object Distance = 15 cm

According to the question by using the formula we get,

\implies \sf \dfrac{1}{f} =\: \dfrac{- 1}{30} - \dfrac{- 1}{15}

\implies \sf \dfrac{1}{f} =\: \dfrac{- 1 + 2}{30}

\implies \sf \dfrac{1}{f} =\: \dfrac{1}{30}

By doing cross multiplication we get,

\implies \sf f =\: 30(1)

\implies \sf f =\: 30 \times 1

\implies \sf\bold{\red{f =\: 30\: cm}}

\therefore The focal length of the lens is 30 cm .

Similar questions