Physics, asked by vanikasarla, 19 days ago

A light ray is incident on air - liquid interface at 45° and is refracted at 30°.What is the refractive index of the liquid?

Answers

Answered by 700323
4

Answer:

Given:

Angle of incidence i = 45°

Angle of refraction r = 30°

 refractive index =n=sin i /sin r

=sin45°/sin 30°

=1/√2/1/2⇒2/√2⇒√2=1.4.14

Given the angle between the reflected and refracted ray = 90°

It means angle of reflection (r) + angle of incidence (i) = 90°

Angle of refraction (r) = (90° - i)

But refractive index n =  sin i/ sin r

=sin i/ sin(90-i)

=sin i/ cos i (∵sin(90-θ)=cos θ)  

From Natural tangent tables tan 54.7° = 1.414 = tan i

The angle of incidence i = 54.7°

Answered by vikkiain
5

1.41

Explanation:

we \:  \: know \:  \:  \boxed{Snell's  \: law \:  \:  =  >  \:  \:  \mu =  \frac{sin \: i}{sin \: r} } \\ Given, \:  \:  \: i = 45° \:  \:  \: and \:  \:  \: r = 30° \\ Now, \:  \:  \:  the \:  \: refractive \:  \: index \:  \: of \:  \: the \:  \:liquid \\   \:  \:  \:  \:  \: \mu =  \frac{sin45°}{sin30°}  \\  \:  =  \frac{ \frac{1}{ \sqrt{2} } }{ \frac{1}{2} }  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  =  \frac{1}{ \sqrt{2} }  \times 2 \\  =  \sqrt{2}  \\  \:  \: \:\: \:=  \boxed{1.41}

Similar questions