Math, asked by meghana9443, 10 months ago

A line makes an angle theta1, theta2, theta3 and theta 4 with diagonals of a cube.Show that cos^2theta1+cos^2theta2+cos^2theta3+cos^2theta4=4/3....
Pls ans my que fast....
I have exam.....
Pls no spammings ​

Answers

Answered by dk6060805
12

\ cos^2\Theta_1 + cos^2\Theta_2 + cos^2\Theta_3 + cos^2\Theta_4 = \frac {4}{3} Proved

Step-by-step explanation:

Refer Figure Attached to Understand Easily,

Take O, a corner of Cube OBLCMANP, as origin and OA, OB, OC, the three edges through it as the axes.

Let OA = OB = OC = a, then the coordinates of O, A, B, C are (0,0,0,), (a,0,0,), (0,a,0),(a,a,0) respectively.

OP, AL, BM, CN be the Diagonal of Cube (4 in Number)

  • Direction cosines of OP are proportional to a-0, a-0, a-0 or a, a, a, i.e. 1, 1, 1
  • Direction cosines of AL are proportional to 0-a, a-0, a-0 or -a, a, a, i.e. -1, 1, 1
  • Direction cosines of BM are proportional to a-0, 0-a, a-0 or a, -a, a, i.e. 1, -1, 1
  • Direction cosines of CN are proportional to a-0, a-0, 0-a or a, a, -a, i.e. 1, 1, -1

Hence,  

  • Direction Cosines of OP are \frac {1}{\sqrt 3}, \frac {1}{\sqrt 3}, \frac {1}{\sqrt 3}
  • Direction Cosines of AL are -\frac {1}{\sqrt 3}, \frac {1}{\sqrt 3}, \frac {1}{\sqrt 3}
  • Direction Cosines of BM are \frac {1}{\sqrt 3}, -\frac {1}{\sqrt 3}, \frac {1}{\sqrt 3}
  • Direction Cosines of CN are \frac {1}{\sqrt 3}, \frac {1}{\sqrt 3}, -\frac {1}{\sqrt 3}

Let us suppose l, m, n be the direction cosines of the line

So, line makes an angle \Theta_1 of  with OP.

Therefore, cos \Theta_1 =l(\frac {1}{\sqrt 3}) + m(\frac {1}{\sqrt 3}) + n(\frac {1}{\sqrt 3})

cos \Theta_1 = \frac {l+m+n}{\sqrt 3} """(1)

Similarly, cos \Theta_2 = \frac {-l+m+n}{\sqrt 3} """(2)

cos \Theta_3 =  \frac {l-m+n}{\sqrt 3} """(3)

cos \Theta_4  = \frac {l+m-n}{\sqrt 3} """(4)

Squaring and Adding (1), (2), (3) and (4) we get-

= cos^2\Theta_1 + cos^2\Theta_2 + cos^2\Theta_3 + cos^2\Theta_4 = \frac {1}{3}[(l+m+n)^2+(-l+m+n)^2+(l-m+n)^2+(l+m-n)^2]

= \frac {1}{3}[4l^2+4m^2+4n^2] = \frac {4}{3}(l^2+m^2+n^2) = \frac {4}{3}(1)\\

So,\ cos^2\Theta_1 + cos^2\Theta_2 + cos^2\Theta_3 + cos^2\Theta_4 = \frac {4}{3}

Attachments:
Similar questions