Math, asked by sorrytoeveryone, 1 month ago

a line segment is of length 10 units and one of its and is (- 2,3) if the ordinate of the other end is 9 then determine the absicca of the other end​

Answers

Answered by VishnuPriya2801
31

Answer:-

Let the absissca of the other point be x.

Given:-

Distance between (- 2 , 3) & (x , 9) = 10 units. (According to the question).

We know that,

Distance between two points (x₁ , y₁) & (x₂ , y₂) is:

  \red{\sf \: D =  \sqrt{ {(x_2 - x_1)}^{2}  +  {(y_2 - y_1)}^{2} } }

Let,

  • x₁ = - 2
  • y₁ = 3
  • x₂ = x
  • y₂ = 9

Hence,

 \implies \sf \: 10 =  \sqrt{(x - ( - 2)) ^{2}  + (9 - 3) ^{2} }

Squaring both sides we get,

 \implies \sf \:  {(10)}^{2}  =  {(x + 2)}^{2}  +  {6}^{2}

using (a + b)² = + + 2ab we get,

 \: \implies \sf \:100 =  {x}^{2}  + 4 + 4x + 36\\  \\  \\ \implies \sf \:0 =  {x}^{2}  + 4x + 40 - 100 \\  \\  \\ \implies \sf \: {x}^{2}  + 4x - 60 = 0\\\\\\

 \implies \sf \:  {x}^{2}   + 10x - 6x - 60 = 0 \\  \\  \\ \implies \sf \:x(x + 10) - 6(x + 10) = 0 \\  \\  \\ \implies \sf \:(x + 10)(x - 6) = 0 \\  \\  \\ \implies  \boxed{\sf \:x =  (- 10  \:  ,\:  6)}

The abscissa of the other end is - 10 or 6.

Answered by sharmac1629
5

Answer:

Let the absissca of the other point be x.

Given:-

Distance between (- 2 , 3) & (x , 9) = 10 units. (According to the question).

We know that,

Distance between two points (x₁ , y₁) & (x₂ , y₂) is:

\red{\sf \: D = \sqrt{ {(x_2 - x_1)}^{2} + {(y_2 - y_1)}^{2} } }D=

(x

2

−x

1

)

2

+(y

2

−y

1

)

2

Let,

x₁ = - 2

y₁ = 3

x₂ = x

y₂ = 9

Hence,

\implies \sf \: 10 = \sqrt{(x - ( - 2)) ^{2} + (9 - 3) ^{2} } ⟹10=

(x−(−2))

2

+(9−3)

2

Squaring both sides we get,

\implies \sf \: {(10)}^{2} = {(x + 2)}^{2} + {6}^{2} ⟹(10)

2

=(x+2)

2

+6

2

using (a + b)² = a² + b² + 2ab we get,

\begin{gathered} \: \implies \sf \:100 = {x}^{2} + 4 + 4x + 36\\ \\ \\ \implies \sf \:0 = {x}^{2} + 4x + 40 - 100 \\ \\ \\ \implies \sf \: {x}^{2} + 4x - 60 = 0\\\\\\ \end{gathered}

⟹100=x

2

+4+4x+36

⟹0=x

2

+4x+40−100

⟹x

2

+4x−60=0

\begin{gathered} \implies \sf \: {x}^{2} + 10x - 6x - 60 = 0 \\ \\ \\ \implies \sf \:x(x + 10) - 6(x + 10) = 0 \\ \\ \\ \implies \sf \:(x + 10)(x - 6) = 0 \\ \\ \\ \implies \boxed{\sf \:x = (- 10 \: ,\: 6)}\end{gathered}

⟹x

2

+10x−6x−60=0

⟹x(x+10)−6(x+10)=0

⟹(x+10)(x−6)=0

x=(−10,6)

Similar questions