a line segment is of length 10 units and one of its and is (- 2,3) if the ordinate of the other end is 9 then determine the absicca of the other end
Answers
Answer:-
Let the absissca of the other point be x.
Given:-
Distance between (- 2 , 3) & (x , 9) = 10 units. (According to the question).
We know that,
Distance between two points (x₁ , y₁) & (x₂ , y₂) is:
Let,
- x₁ = - 2
- y₁ = 3
- x₂ = x
- y₂ = 9
Hence,
Squaring both sides we get,
using (a + b)² = a² + b² + 2ab we get,
∴ The abscissa of the other end is - 10 or 6.
Answer:
Let the absissca of the other point be x.
Given:-
Distance between (- 2 , 3) & (x , 9) = 10 units. (According to the question).
We know that,
Distance between two points (x₁ , y₁) & (x₂ , y₂) is:
\red{\sf \: D = \sqrt{ {(x_2 - x_1)}^{2} + {(y_2 - y_1)}^{2} } }D=
(x
2
−x
1
)
2
+(y
2
−y
1
)
2
Let,
x₁ = - 2
y₁ = 3
x₂ = x
y₂ = 9
Hence,
\implies \sf \: 10 = \sqrt{(x - ( - 2)) ^{2} + (9 - 3) ^{2} } ⟹10=
(x−(−2))
2
+(9−3)
2
Squaring both sides we get,
\implies \sf \: {(10)}^{2} = {(x + 2)}^{2} + {6}^{2} ⟹(10)
2
=(x+2)
2
+6
2
using (a + b)² = a² + b² + 2ab we get,
\begin{gathered} \: \implies \sf \:100 = {x}^{2} + 4 + 4x + 36\\ \\ \\ \implies \sf \:0 = {x}^{2} + 4x + 40 - 100 \\ \\ \\ \implies \sf \: {x}^{2} + 4x - 60 = 0\\\\\\ \end{gathered}
⟹100=x
2
+4+4x+36
⟹0=x
2
+4x+40−100
⟹x
2
+4x−60=0
\begin{gathered} \implies \sf \: {x}^{2} + 10x - 6x - 60 = 0 \\ \\ \\ \implies \sf \:x(x + 10) - 6(x + 10) = 0 \\ \\ \\ \implies \sf \:(x + 10)(x - 6) = 0 \\ \\ \\ \implies \boxed{\sf \:x = (- 10 \: ,\: 6)}\end{gathered}
⟹x
2
+10x−6x−60=0
⟹x(x+10)−6(x+10)=0
⟹(x+10)(x−6)=0
⟹
x=(−10,6)