Science, asked by Kaisahooyara, 1 year ago

A liquid drop of diameter 4mm breaks into 1000 droplets of equal size. calculate the Work done. (Surface tension of liquid = 0.07 N/m)​

Answers

Answered by ssphotography7375
4

Answer: 3.165 × 10^-5 J/m^2

Explanation:

Hope ! It will help you

Plz mark as brainlist answer .

Attachments:
Answered by KINGofDEVIL
59

 \huge{  \blue{\underline{ \overline{ \boxed{ \orange{ \mathbb{ANSWER}}}}}}}

GIVEN :

☆ Diameter of liquid drop (D) = 4mm

☆ Surface Tension of liquid = 0.07 N/m

TO FIND :

☆ Workdone (W) for the process.

SOLUTION :

D = 4 mm

R = 2 mm

R =  \sf \: 2  \: \times  \:  {10}^{ - 3} m

Let radius of the larger drop be 'R' and as smaller drops are of equal size, so let their radius be 'r'.

☆ According to the Question,

 \boxed{ \sf{ \green{Vol^{m}.  \: of \:  larger \:  drop = 1000 \times  Vol^{m}.  \times of \:  each \:  smaller \:  drop.}}}

  \implies \:   \sf{\frac{4}{3} \pi {R}^{3}  = 1000 \times  \frac{4}{3} \pi {r}^{3} }

  \implies \:   \sf{ \cancel\frac{4}{3}  \cancel\pi  \: {R}^{3}  = 1000 \times   \cancel\frac{4}{3}\cancel\pi \:  {r}^{3} }

 \implies \:   \sf{ {R}^{3}  = 1000 \times  {r}^{3} }

\implies \:   \sf{ {(R)}^{3}  =  {(10r)}^{3} }

\implies \:   \sf{ R  =  10r}

[Putting the value of R from given]

\implies \:   \sf{ \sf \: 2  \: \times  \:  {10}^{ - 3} m  =  10r}

  \boxed{\therefore \: { \sf  r = 2  \: \times  \:  {10}^{ - 4} m}}

Now, Initial Area of larger drop =  \sf4\pi {R}^{2}

Final area of 1000 droplets =  1000 \times \sf4\pi {r}^{2}

 \boxed{ \red{\sf{ Change \:  in \:  Area, \Delta A \:  =  Final  \: Area - Initial  \: Area }}}

\sf{\Delta A \:  =  1000 \times 4\pi {r}^{2}  - 4\pi {R}^{2} }

\sf{\Delta A \:  =  4\pi (1000{r}^{2}  - {R}^{2})}

\sf{\Delta A \:  =  4\pi[ 1000(  { \frac{R}{10} )}^{2}  -  {R}^{2} ) }  ]

\sf{\Delta A \:  =  4\pi[ 10{R}^{2}  -  {R}^{2}}]

\sf{\Delta A \:  =  4\pi[ 9{R}^{2}}]

\sf{\Delta A \:  =  4 \times 3.14 \times 9 \times( {2 \times  {10}^{ - 3} )}^{2}}

\sf{\Delta A \:  =  36 \times 3.14  \times {4 \times  {10}^{ - 6}}}

\sf{\Delta A \:  = 144\times 3.14  \times  {10}^{ - 6}}

\boxed{  \blue {\sf{ Now,  \: We \:  have\:  : \Delta W = S  \times \Delta  A}}}

[On putting the values we get, ]

\sf{ \Delta W =  0.07\times 144\times 3.14  \times  {10}^{ -6}}

\sf{ \Delta W =  31.65 \times  {10}^{ -6}}

\sf{ \Delta W =  3.165 \times  {10}^{ -5}}

 \blue{\boxed {\sf{Hence  \: our \: required  \: Work \:  done \:  is   \:  \: \: 3.165 \times  {10}^{ -5} J}}}

#answerwithquality #BAL

Similar questions