Physics, asked by sonujolly3137, 9 months ago

A liquid rises to a height of 5 cm in a glass capillary of radius 0.035 cm. What will be the height of liquid column in a glass capillary of radius 0.05 cm?

Answers

Answered by BrainlyConqueror0901
4

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Height\:of\:liquid\:column\:in\:glass\:capillary\:2=2.45\:cm}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:  \implies Glass \: capillary \: radius( r_{1}) = 0.035 \: cm \\  \\ \tt:  \implies Liquid \: rise \: in \:  r_{1} \: radius \: capillary( h_{1}) = 5 \: cm \\  \\ \tt:  \implies Glass \: capillary \: radius( r_{2}) = 0.05 \: cm \\  \\  \red{\underline \bold{To \: Find :}} \\  \tt:  \implies Liquid \: rise \: in \:  r_{2} \: radius \: capillary( h_{2}) =?

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt:  \implies Volume \: of \: capillary  \: 1 = Volume \: of \: capillar \: 2 \\  \\ \tt:  \implies \pi  r_{1}^{2} \:  h_{1} = \pi r_{2}^{2}  \: h_{2} \\  \\ \tt:  \implies  \frac{\pi  r_{1} ^{2}  \: h_{1}  }{\pi}  =  { r_{2} }^{2}  \:  h_{2} \\  \\ \tt:  \implies   {0.035}^{2} \times 5  =  {0.05}^{2}  \times  h_{2} \\  \\ \tt:  \implies 0.001225 \times 5 = 0.0025 \times  h_{2} \\  \\ \tt:  \implies h_{2} =  \frac{0.001225 \times 5}{0.0025} \\  \\  \green{ \tt:  \implies  h_{2} =2.45 \: cm}

Similar questions