Physics, asked by zainab825, 6 months ago

A liquid rises to a height of 5 cm in a glass capillary of radius 0.035 cm. What will be the height of liquid column in a glass capillary of radius 0.05 cm?​

Answers

Answered by Anonymous
96

{\mathfrak{\underline{\purple{\:\:\: Given:-\:\:\:}}}} \\ \\

\:\:\:\:\bullet\:\:\:\sf{Glass \: capillary \: radius( r_{1}) = 0.035 \: cm  }

\:\:\:\:\bullet\:\:\:\sf{Liquid \: rise \: in \:  r_{1} \: radius \: capillary( h_{1}) = 5 \: cm}

\:\:\:\:\bullet\:\:\:\sf{Glass \: capillary \: radius( r_{2}) = 0.05 \: cm }

\\

{\mathfrak{\underline{\purple{\:\:\:To \:Find:-\:\:\:}}}} \\ \\

\:\:\:\:\bullet\:\:\:\sf{ Liquid \: rise \: in \:  r_{2} \: radius \: capillary( h_{2}) =?}

\\

{\mathfrak{\underline{\purple{\:\:\: Solution:-\:\:\:}}}} \\ \\

★ Volume of capillary 1 = Volume of capillar 2

\\

\dashrightarrow\:\: \sf{ \pi  r_{1}^{2} \:  h_{1} = \pi r_{2}^{2}  \: h_{2}}

\\

\dashrightarrow\:\: \sf{ \dfrac{\pi  r_{1} ^{2}  \: h_{1}  }{\pi}  =  { r_{2} }^{2}  \:  h_{2}}

\\

\dashrightarrow\:\: \sf{{0.035}^{2} \times 5  =  {0.05}^{2}  \times  h_{2}}

\\

\dashrightarrow\:\: \sf{0.001225 \times 5 = 0.0025 \times  h_{2}}

\\

\dashrightarrow\:\: \sf{h_{2} =  \dfrac{0.001225 \times 5}{0.0025}}

\\

\dashrightarrow\:\: \sf{\dfrac{0.006125}{0.0025}}

\\

\dashrightarrow\:\: \sf{h_{2} =2.45 \: cm}

\\

\therefore\:\bf{Height\: of\: the\:liquid\: column\:is\:2.45 \: cm}

Similar questions