Physics, asked by keya39, 10 months ago

A liquid with 0.48 cal.g^-1.°C^-1 relative heat and 25°C temperature is mixed with another liquid with 0.36 cal.g^-1.°C^-1 and 10°C temparature .If the final temparature is 20°C then in what ratio the liquids are mixed?​

Answers

Answered by ItsTogepi
46

Let the liquids be A and B.

\huge\underline\mathfrak\color{red}{Given}

  • Relative Heat of the liquid A
  •  \sf{ (s _{A} ) = 0.48cal. {g}^{ - 1} . {c}^{ - 1} }
  • Temparature of the liquid A
  • \sf{(t_{A}) =  {20}^{0} C }

\rule{300}{2}

  • Relative Heat of the liquid B
  • \sf{ (s _{B} ) = 0.36cal. {g}^{ - 1} . {c}^{ - 1} }
  • Temparature of the liquid B
  • \sf{(t_{B}) =  {10}^{0} C }

Final temparature of the liquids=20°C.

\rule{300}{2}

\huge\underline\mathfrak\color{red}{To~Find}

  • The ratio of the liquids.

\rule{300}{2}

\huge\underline\mathfrak\color{red}{Solution}

Relative Heat of the liquid A

 \sf{ (s _{A} ) = 0.48cal. {g}^{ - 1} . {c}^{ - 1} }

Temparature of the liquid A

\sf{(t_{A}) =  {20}^{0} C}

Now,

Relative Heat of the liquid B

\sf{ (s _{B} ) = 0.36cal. {g}^{ - 1} . {c}^{ - 1} }

Temparature of the liquid B

\sf{(t_{B}) =  {10}^{0} C}

After mixing the two liquids, the final temparature of the mixture is 20°C.

Now,

Heat absorbed by A

\sf{ H_{A}= m_{A} s_{A}(t_{A}- t)  } \\  \sf{\implies  H_{A}= m_{A} \times 0.48(25 - 20)} \\ \sf{\implies  H_{A} =  m_{A} \times 0.48 \times 5} \\ \sf{\implies  H_{A} = 2.4 m_{A}}

Heat absorbed by B

\sf{ H_{B}= m_{B} s_{B}(t  - t_{B})  } \\  \sf{\implies  H_{A}= m_{A} \times 0.36(20 - 10)} \\ \sf{\implies  H_{B} =  m_{B} \times 0.36 \times 10} \\ \sf{\implies  H_{B} = 3.6 m_{B}}

\rule{300}{2}

According to the fundamental principle of Calorimetry,we get,

\sf{ H_{A} =  H_{B}}

\sf{\implies  \frac{24 m_{A} }{10}  =  \frac{36 m_{B} }{10} }

\sf{\implies 240 m_{A} = 360 m_{B}  }

\sf{\implies  \frac{ m_{A}}{ m_{B}}  = \cancel \frac{360}{240} }

\sf{\implies  \frac{  m_{A} }{ m_{B} }  =  \frac{3}{2} }

\sf{m _{A}:m_{B} = 3:2}

Hence, the ratio of the mixed liquids is 3:2.

\huge\underline\mathfrak\color{red}{Thank~You}


Anonymous: Awesome ❤
Anonymous: Perfect ♡ :smirk:
Similar questions
Math, 1 year ago