Math, asked by sampatkumavat49, 11 months ago

A loan of ₹15000 was taken on compound interest. If the rate of compound interest is 12 p. c. p.a. find the amount of settle the loan after 3years​

Answers

Answered by Anonymous
77

AnswEr :

\bf{ Given}\begin{cases}\sf{Principal = Rs. \:15000}\\\sf{Rate = 12 \: \footnotesize\text{percent compounded per annum}}\\ \sf{Time = 3 \:Years}\\\sf{Amount = ?} \end{cases}

Let's Head to the Question Now :

\longrightarrow \sf{Amount = P \times \bigg(1 +\dfrac{r}{100} \bigg)^{t}} \\ \\\longrightarrow \sf{Amount = 15000 \times \bigg(1 + \cancel\dfrac{12}{100} \bigg)^{3}} \\ \\\longrightarrow \sf{Amount = 15000 \times \bigg(1 + \dfrac{3}{25} \bigg)^{3}} \\ \\\longrightarrow \sf{Amount = 15000 \times \bigg(\dfrac{25 + 3}{25} \bigg)^{3}} \\ \\\longrightarrow \sf{Amount = 15000 \times \bigg(\dfrac{28}{25} \bigg)^{3}} \\ \\\longrightarrow \sf{Amount = \cancel{15000} \times \dfrac{784}{\cancel{625}} \times \dfrac{28}{25}} \\ \\\longrightarrow \sf{Amount = 24 \times784 \times \dfrac{28}{25}} \\ \\\longrightarrow \sf{Amount = \dfrac{526848}{25}}\\

\begin{array}{r|l} &\sf 21073.92 \\\cline{1-2} 25& 5\: 2\: 6\:8\:4\:8\\ &5\:0\: \\ \cline{2-2} & \quad2\:6\\&\quad2\:5\\\cline{2-2} &\quad\:\:\:1\:8\:4\\&\quad\:\:\:1\:7\:5\\\cline{2-2}&\quad \quad\quad\:9\:8\\&\qquad\quad\:7\:5\\\cline{2-2}&\qquad\quad\:2\:3\:0\\&\qquad\quad\:2\:2\:5\\\cline{2-2}&\qquad\qquad\:\:\:5\:0\\&\qquad\qquad\:\:\:5\:0\\\cline{2-2}&\qquad\qquad\:\:\boxed{0\:0}\end{array}

\longrightarrow\large\boxed{\sf{Amount =Rs. \: 21073.92}}

Rs. 21073.92 is amount to settle loan.

#answerwithquality #BAL

Answered by RvChaudharY50
120

\begin{lgathered}  \red{\bf{Given}}\begin{cases} \sf \: principal = 15000 \\  \sf \: rate = 12\%   \\  \sf \: time = 3 \: years\\  \green{\bf amount =?} \:  \end{cases}\end{lgathered}

\Large\bold\star\underline{\underline\textbf{Solution(1)}}

  \blue{ \boxed{\sf \: A = p(1 +  \dfrac{rate}{100} )^{time}}}

Putting values we get,,

\red\leadsto \sf A \:  = 15000(1 +  \dfrac{12}{100} )^{3}  \\  \\ \red\leadsto \sf A \:  = 15000 \:  \times  \frac{28}{25} \times  \frac{28}{25}   \times  \frac{28}{25}  \\  \\ \red\leadsto   \red{\boxed{\sf  \green{A} \:   \blue{=}  \pink{rs.} \orange{21073.92}}}

Hence, The amount that settle the loan is Rs.21073.92.

___________________________________

\Large\underline\mathfrak{Solution(2)}

Lets Try it with Ratio method Now, ,

 \bf \: Rate = 12\% =  \dfrac{12}{100}  =   \blue{\dfrac{3}{25}}

Now, Let us assume that, Principal is Rs.25, Interest is Rs.3 .

→ Than our Amount will be = P + interest = Rs.28 ( in one yr)

  \green{\mathfrak Hence,}

25 -  -  -  -  -  -  - 28 \\  \\  {25}^{3}  -  -  -  -  -  -  {28}^{3}  \\  \\  \red{15625(p) -  -  -  -  - 21952(a)}

So, we can say that,

when Principal is Rs.15625, at 12% our amount will be Rs.21952 .

so,

when Principal is Rs.15000 , at 12% , our amount will be

\red{\boxed\implies} \:  \bf A =   \dfrac{21952 \times 15000}{15625}  \\  \\ \red{\boxed\implies} \: \boxed{ \bf  \red{A}  \blue{=}  \green{Rs}. \orange{21073.92}}

Hence, amount settle the loan will be Rs.21073.92 .

____________________________________

\rule{200}{4}

\Large\bold\star\underline{\underline\textbf{Extra\:Brainly\:Knowledge}}

For a principal amount of P at the interest rate of r per annum in t years if the interest is I then ...

1) For Simple Interest

\bf\rightarrow \boxed{I=\frac{P\times r\times t}{100}}

2)For Compound Interest

\bf\rightarrow \boxed{I=P(1+\frac{r}{100}){}^{nt}}

where, n=interest period

Ex. If the principal is compounded

annually(per year) then ,

n=1

If the principal is compounded

half yearly(in every 6 months) then ,

n=2

If the principal is compounded

quarterly (in every 3 months) then ,

n=4....

__________________________________

#BAL

Similar questions