Math, asked by saryka, 4 months ago

a = log {12 base 24}, b = log {24 base 36}, c = log {36 base 48}, then 1 + abc is equal to?​

Attachments:

Answers

Answered by Asterinn
126

Given :-

 \rm \rightarrow a =  log_{24}(12)  \\ \rm\rightarrow b =  log_{36}(24)  \\\rm\rightarrow c =  log_{48}(36)

To find :-

 \rm 1+abc

Solution :-

\rm \longrightarrow 1+abc

\rm\longrightarrow1 +  \bigg(   log_{24}(12)    \times  log_{36}(24)  \times   log_{48}(36)   \bigg)

\rm\longrightarrow1 +  \bigg(    \dfrac{log(12)}{log(24)}     \times   \dfrac{log(24)}{log({36})}   \times    \dfrac{log(36)}{log({48})}    \bigg) \\  \\ \\  \rm\longrightarrow1 +  \bigg(    \dfrac{log(12)}{1}     \times   \dfrac{1}{1}   \times    \dfrac{1}{log({48})}    \bigg)\\  \\ \\  \rm\longrightarrow1 +  \bigg(    \dfrac{log(12)}{log({48})}   \bigg)\\  \\ \\  \rm\longrightarrow 1 +    log_{48}(12) \\  \\ \\  \rm\longrightarrow log_{48}(48) +    log_{48}(12) \\  \\ \\  \rm\longrightarrow log_{48 }(48 \times 12)  \\  \\ \\  \rm\longrightarrow log_{48}{576}\\  \\ \\  \rm\longrightarrow log_{48}{ {(24)}^{2} } = 2log_{48}{ {(24)} }\\  \\ \\  \rm\longrightarrow 2log_{48}{ {(24)} } \times log_{36}{ {(36)} }\\  \\ \\  \rm\longrightarrow 2 \times \dfrac{log_{24}}{log_{48}}  \times  \dfrac{log_{36}}{log_{36}} \\  \\ \\  \rm\longrightarrow 2 \times \dfrac{log_{24}}{log_{36}}  \times  \dfrac{log_{36}}{log_{48}} \\  \\ \\  \rm\longrightarrow 2 \times b \times  c\\  \\ \\  \rm\longrightarrow 2bc

Answer :-

The correct answer is option (c) 2bc

Answered by nnr858502
11

Step-by-step explanation:

the correct answer is c 2bc

Similar questions