Physics, asked by nitishjha6302123324, 10 months ago

a longitudinal progressive wave is given by the equation y=5×10^-2sinπ(400t+x)m.find 1.amplitude 2.frequncy 3.wave length 4.velocity of the wave 5.velocity and acceleration of the particle at x=1/6m at t=0.01s 6.maximum particle velocity and acceleration.​

Answers

Answered by hp02034010117
0

Answer:

y=Asin(ωt+kx)

y=5×10^−2sin(πt×400+πx)

Comparing, we get A=5×10^−2 and k=π

λ=2π/k

λ=2 m

Ans=5×10−2m, λ=2m

hope it's help you..

Answered by nirman95
5

 \rm y = 5 \times  {10}^{ - 2}  \sin\pi(400t + x)

 \rm \implies y = 5 \times  {10}^{ - 2}  \sin(400\pi t + \pi x)

Now, amplitude is max displacement :

 \boxed{ \bf amplitude = 5 \times  {10}^{ - 2}  \: m}

Now, let frequency be f :

 \rm \: f =  \dfrac{1}{T}

 \rm \implies \: f =  \dfrac{ \omega}{2\pi}

 \rm \implies \: f =  \dfrac{400\pi}{2\pi}

 \boxed{ \bf\implies \: f =  200 \: hz}

Now, let wavelength be \lambda.

 \rm \lambda =  \dfrac{2\pi}{k}

 \rm \implies \lambda =  \dfrac{2\pi}{\pi}

 \boxed{ \bf \implies \lambda =  2 \: m}

Let velocity be v :

 \rm y = 5 \times  {10}^{ - 2}  \sin(400\pi t + \pi x)

 \rm \implies v = 20\pi\cos(400\pi t + \pi x)

At x = 1/6 m and t = 0.01 sec:

 \rm \implies v = 20\pi\cos(4\pi +  \frac{\pi}{6} )

 \rm \implies v = 20\pi\cos(  \dfrac{\pi}{6} )

 \boxed{ \bf \implies v =  54.38  \: m {s}^{ - 1} }

Hope It Helps.

Similar questions