Math, asked by uddinu090, 1 month ago

A man borrowed Rs. 200 and paid back
Rs. 250 after 2 years. The rate of interest
per annum is
(a) 10%
(b) 20%
(c) 25%
(d) 12.5%​

Answers

Answered by Anjit12
2

Answer:

12.5%

Step-by-step explanation:

Rate= I*100/P*T

= 50*100/200*2

=25/2

=12.5

PLEASE MARK ME AS BRAINLIEST

Answered by Anonymous
169

Answer:

\begin{gathered}{\Large{\textsf{\textbf{\underline{\underline{\color{gray}{Given:}}}}}}}\end{gathered}

  • \red\bigstar Interest = 250
  • \red\bigstar Principle = 200
  • \red\bigstar Time = 2 years

\begin{gathered}\end{gathered}

\begin{gathered}{\Large{\textsf{\textbf{\underline{\underline{\color{gray}{To Find:}}}}}}}\end{gathered}

  • \red\bigstar Rate

\begin{gathered}\end{gathered}

\begin{gathered}{\Large{\textsf{\textbf{\underline{\underline{\color{gray}{Using Formula:}}}}}}}\end{gathered}

\dag\underline{\boxed{\sf{SI = A - P}}}

Where

  • \green\star S.I = Simple Interest
  • \green\star A = Amount
  • \green\star P = Principle

\dag{\underline{\boxed{\sf{Rate = {\dfrac{S.I \times 100}{P \times T}}}}}}

Where

  • \green\star S.I = Simple Interest
  • \green\star P = Principle
  • \green\star T = Time

\begin{gathered}\end{gathered}

\begin{gathered}{\Large{\textsf{\textbf{\underline{\underline{\color{gray}{Solution:}}}}}}}\end{gathered}

{\bigstar \:{\underline{\pmb{\frak{\red{Firstly,Finding \: the \: Simple \: Interest}}}}}}

\quad:\implies{\sf{S.I = A - P}}

  • Substituting the values

\quad:\implies{\sf{S.I = 250 - 200}}

\quad:\implies{\sf{S.I = Rs.50}}

\begin{gathered} \dag{\boxed{\textsf{\textbf{\underline{\color{green}{Simple Interest = Rs.50}}}}}}\end{gathered}

  • Simple Interest = Rs.50

\begin{gathered}\end{gathered}

{\bigstar \:{\underline{\pmb{\frak{\red{ Now,Finding \: The \: Rate \: of \: Interest }}}}}}

 \quad{: \implies{\sf{Rate = \bf{\dfrac{S.I \times 100}{P \times T}}}}}

  • Substituting the values

 \quad{: \implies{\sf{Rate = \bf{\dfrac{50 \times 100}{200 \times 2}}}}}

 \quad{: \implies{\sf{Rate =\bf{\dfrac{5000}{400}}}}}

 \quad{: \implies{\sf{Rate =\bf{\cancel{\dfrac{5000}{400}}}}}}

 \quad{: \implies{\sf{Rate =\bf{12.5 \%}}}}

\begin{gathered} \dag{\boxed{\textsf{\textbf{\underline{\color{green}{Rate = 12.5\%}}}}}}\end{gathered}

{\therefore{\underline{\sf{Hence, The \:  Rate \:  of \:  Interest  \: per  \: annum \:  is \:  12.5\%}}}}

\begin{gathered}\end{gathered}

\begin{gathered}{\Large{\textsf{\textbf{\underline{\underline{\color{gray}{Learn More:}}}}}}}\end{gathered}

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered} \dag \: \underline{\bf{More \: Useful \: Formula}}\\ {\boxed{\begin{array}{cc}\dashrightarrow {\sf{Amount = Principle + Interest}} \\ \\ \dashrightarrow \sf{ P=Amount - Interest }\\ \\ \dashrightarrow \sf{ S.I = \dfrac{P \times R \times T}{100}} \\ \\ \dashrightarrow \sf{P = \dfrac{Interest \times 100 }{Time \times Rate}} \\ \\ \dashrightarrow \sf{P = \dfrac{Amount\times 100 }{100 + (Time \times Rate)}} \\ \end{array}}}\end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

Similar questions