Math, asked by sdeepanshi562, 5 months ago

a man borrows money at 3% per annum interest payable yearly and lends it immediately at 5% per annum interest payable half-yearly and gains thereby rupees 165 at the end of year what sum of money does he borrows​

Answers

Answered by Anonymous
161

Given :

  • a man borrows money at 3% per annum interest payable yearly.

  • lends it immediately at 5% per annum interest payable half-yearly .

  • Gains thereby rupees 165 at the end of year

To Find :

  • what sum of money does he borrows

Solution :

Let sum is x

Interest for one Year :

 :  \implies \sf \:  \:  \:  \:  \frac{x \times 3}{100}  \\  \\  \\  :  \implies \sf \:  \:  \:  \:  \frac{3x}{100}

Interest for 6 month :

 :  \implies \sf \:  \:  \:  \:  \frac{x \times 5}{2 \times 100}  \\  \\  \\  :  \implies \sf \:  \:  \:  \:   \cancel{\frac{5x}{200}} \\  \\  \\ :  \implies \sf \:  \:  \:  \:  \frac{x}{40}

Interest for last 6 month :

 :  \implies  \sf \:  \:  \:  \:  \:  \: \frac{x}{40}    +  \frac{ \frac{x}{8} }{2 \times 100} \\  \\  \\  \\  :  \implies  \sf \:  \:  \:  \:  \:  \: \frac{x}{40}    + \frac{x }{8}  \times  \frac{1}{200}  \\  \\  \\  :  \implies  \sf \:  \:  \:  \:  \:  \: \frac{x}{40}    + \frac{x}{1600}  \\  \\

His net gain :

:  \implies \sf \:  \:  \:  \:  \frac{x }{40} +  \frac{x}{40}   +  \frac{x}{1600}  -  \frac{3x}{100}  \\  \\  \\ :  \implies \sf \:  \:  \:  \:  \frac{33x}{1600}  \\  \\

Now we have :

:  \implies \sf \:  \:  \:  \:  \frac{33x}{1600}   = 165\\  \\  \\  \\ :  \implies \sf \:  \:  \:  \: x =  \frac{ 1600 \times \cancel{165}}{ \cancel{33} } \\  \\  \\ :  \implies \sf \:  \:  \:  \: x = 1600 \times 5 \\  \\  \\ :  \implies \sf \:  \:  \:  \: x  = 8000

Hence 8000 Rs. he borrows


mddilshad11ab: nice
Anonymous: Great!
Answered by abhinabadas75
0

Answer:

Let principal be x.

Interest payable yearly = PRT/100 = 3x/100

Interest payable half-yearly = p{(1+r/200)^2n - 1 }

= 81x/1600

ATQ

81x/1600 - 3x/100 = 330

.............=330

.............

33x/1600 = 330

x = 330×1600/33 = 16000 (Ans)

Similar questions