Math, asked by utpala7, 9 months ago

a man borrows rupees 15000 at 12% per annum compounded annually. if he paid rupees 4400 at the end of each year find the amount outstanding against him at the beginning of the third year?​

Answers

Answered by eknathabadiger65
0

Answer:

Amount to be paid at the end of two years will be =Amountafter2years=8000(1+

100

10

)

2

=8000(1.1)

2

=8000(1.21) =9680 Amount already paid in 2 years is(3200+1500)=4700 Therefore amount of loan outstanding at the beginning of third year will be(9680−4700)=4980 follow me ✌️ keep samile ✌

Answered by silentlover45
15

\bf\underline{Solutions:-}

  •  \: \: \: \: \: \leadsto \: \: \sf{Principal \: = \: {1500}}

  •  \: \: \: \: \: \leadsto \: \: \sf{rate \:  \: = \: \: {{12} \: \%}}

  •  \: \: \: \: \: \leadsto \: \: \sf{Amount \:  \: = \: \: {4400}}

\bf\underline{To \: \: find:-}

  • \: \: \: \: \: \sf{The \: \: amount \: \: outstanding \: \: against \: \: him \: \: at \: \: the \: \: beginning \: \: of \: \: the \: \: third \: \: year.}

\bf\underline{Solutions:-}

  •  \: \: \: \: \: \sf{simple \: \: interest \: \: =  \: \: \dfrac{principal \: \times \: rate \: \times \: time}{100}}

 \: \: \: \: \: \leadsto \: \: \dfrac{15000 \: \times \: 12 \: \times \: 1}{100}

 \: \: \: \: \: \leadsto \: \: \dfrac{15000 \: \times \: 12 \: \times}{100}

 \: \: \: \: \: \leadsto \: \: {150 \: \times \: 12}

 \: \: \: \: \: \leadsto \: \: {1800}

  •  \: \: \: \: \: \sf{Amount \: \: at \: \: the \: \: end \: \: of \: \: first \: \: year \: \: \leadsto \: \: p \: + \: {1}}

 \: \: \: \: \: \leadsto \: \: {15000}\: + \: {1800}

 \: \: \: \: \: \leadsto \: \: {16800}

 \: \: \: \: \: \sf{Amount \: \: left \: \: after \: \: repaying \: \: \leadsto \: \:  {16800} \:  - \: {4400}}

 \: \: \: \: \: \leadsto \: \: {12400}

  • \: \: \: \: \: \sf{principal \: \: for \: \: the \: \: second \: \: year:-}

 \: \: \: \: \: \leadsto \: \: \dfrac{{12400} \: \times \: {12} \: \times \: {1}}{100}

 \: \: \: \: \: \leadsto \: \: \dfrac{12400 \: \times \: 12}{100}

 \: \: \: \: \: \leadsto \: \: {1800} \: \times \: {12}

 \: \: \: \: \: \leadsto \: \: {1488}

\: \: \: \: \: \sf{Amount \: \: with \: \: interest \: \: \leadsto {12400} \:  - \:  {1488}}

 \: \: \: \: \: \leadsto \: \: {13888}

\: \: \: \: \: \sf{Amount \: \: after \: \: repaying \: \: \leadsto {13888} \:  - \:  {4400}}

 \: \: \: \: \: \leadsto \: \: {9488}

\: \: \: \: \: \sf{Hence, \: the \: \: third \: \: year \: \: is \: \: {9488}}

Similar questions