Math, asked by rajarpit60, 1 year ago

A man buys a plot of land at 3,60,000. He sells one third of the plot at a loss of 20%. Again, he sells two -thirds of plot left at a profit of 25%. At what price should he sell the remaining plot in order to get a profit of 10% on the whole ?

Answers

Answered by prem33
2
your answer is 20 , 000 rs
see the photo clearly
hope you will understand better
Attachments:
Answered by Salmonpanna2022
2

Answer:

100000

Step-by-step explanation:

Given cost price of land = 3,60,000.

(i)

Given, overall profit = 10%.

Selling price of the whole part = CP * (100 + gain%)/100

                                                     = 360000 * (100 + 10)/100

                                                     = 3600 * 110

                                                     = 396000.

(i)

Cost price of (1/3)rd of plot = (1/3) * 360000

                                            = 120000.

Loss incurred = 20%.

We know that Selling price = {(100 - Loss%/100} * Cost price

                                             = {(100 - 20/100} * 120000

                                             = (80/100) * 120000

                                             = 96000.

(ii)

Given that (2/3)rd of the plot left at the profit of 25%.

⇒ (2/3) * (1 - 1/3)

⇒ (2/3) * (2/3)

⇒ 4/9 part of initial area.

So,cost price of (4/9) part of initial area = 360000 * (4/9)

                                                                 = 160000

Selling price = CP * {(100 + Gain%)/100}

                    = 160000[100 + 25/100]

                    = 160000[125/100]

                    = 200000

(iii)

Cost price of plot left = 360000 * (1 - 1/3 * 4/9)

                                   = 80000

(iv)

⇒ Selling price of remaining land = 390000 - (200000 + 96000)

                                                        = 396000 - 296000

                                                        = 100000.

Hope it's help you.

Similar questions