Math, asked by sahil3586, 11 months ago

A man covers a distance of 40 km.he covers first 10km at 10km/h, second 10km at 20km/h, third 10km at 30km/h and last 10km at 40km/h. What is the average speed of man?

Answers

Answered by Anonymous
92

Required average speed = 19.2 km/h

Attachments:
Answered by Anonymous
116

\Large\underline{\underline{\sf \blue{Given}:}}

  • Distance covered by man = 40km

  • He covers

First distance \sf{(s_1)} =10km

Speed of first Distance \sf{(v_1)}=10km/h

Second distance \sf{(s_2)}=10km

Speed of second Distance \sf{(s_2)}=20km/h

Third distance \sf{(s_3)}=10km

Speed of third distance \sf{(v_3)}=30km/h

Last Distance \sf{(s_4)}=10km

Speed of last Distance \sf{(v_4)}=40km/h

\Large\underline{\underline{\sf \blue{To\:Find}:}}

  • Average Speed of man = ?

\Large\underline{\underline{\sf \blue{Solution}:}}

We know :

\large{\boxed{\sf Average\:Speed=\frac{Total\: Distance}{Total\:Time} }}

Total Time :-

{\boxed{\sf Time=\dfrac{Distance}{Speed}}}

\implies{\sf t_1=\dfrac{v_1}{s_1} }

\implies{\sf t_1=\dfrac{10}{10}\:\:\implies \: 1hr }

\implies{\sf t_2=\dfrac{s_1}{v_2}}

\implies{\sf t_2=\dfrac{10}{20}\:\implies\:\dfrac{1}{2}hr}

\implies{\sf t_3=\dfrac{s_3}{v_3}}

\implies{\sf t_3=\dfrac{10}{30}\:\:\implies\dfrac{1}{3}hrs}

\implies{\sf t_4=\dfrac{s_4}{v_4} }

\implies{\sf t_4=\dfrac{10}{40}\:\:\implies\:\dfrac{1}{4}hr }

{\boxed{\sf Total\:time(t)=t_1+t_2+t_3+t_4 }}

\implies{\sf t=1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}}

\implies{\sf t=\dfrac{25}{12}hr }

Total Distance

s = 40km

Average Speed :

\implies{\sf  V_{av}=\dfrac{40}{\dfrac{25}{12}}}

\implies{\sf V_{av}=\dfrac{480}{25} }

\implies{\sf V_{av}=19.2\:km/h }

\Large\underline{\underline{\sf \blue{Answer}:}}

•°• Average speed of man is 19.2km/h

Similar questions
Math, 11 months ago