Math, asked by ItzShamik, 2 months ago

A man crosses a distance of 88 m while going round a rectangular field of length 17 m twice. Find the breadth of the field.

Please solve this math. ​

Answers

Answered by TulsiVrinda
0

Answer:

5m

Step-by-step explanation:

perimeter - 88/2 =>44

2(17 + x )=44

17+x = 22

x = 5

Answered by ItzBrainlyLords
24

_____________________________________________

 \\  \large \underline{ \underline{ \sf \star \: given : }} \\  \\  \large \sf \: length = 17m \\  \\  \large \sf \: distance = 88m \\  \\  \large \sf \: field \:  \: travelled \:  \: twice.. \\

_____________________________________________

 \\  \large \red{  \sf \: solving -  \: } \\  \\  \large \sf \: perimeter \:  \: of \:  \: rectangle : \\  \\   \large \sf :  \implies \:  p = \frac{88}{2}  \\ \\   \\   \large \sf :  \implies \:  p = \frac{ \cancel{88} \:  \: 44}{ \cancel2}  \\  \\ \\   \large \tt \therefore \:  \underline{ \pink{  \tt \: perimeter = 44m}} \\

_____________________________________________

 \\  \large \sf \: using \:  \: formula :  \\  \\  \large \tt \: perimeter  =  \\  \large \:  \:  \:  \sf \boxed{ \tt \green{2(length + breadth)}} \\ \\   \\ \large \tt  : \implies \: p = 2(17 +  b) \\  \\ \large \tt  : \implies \: 44= 2(17 +  b) \\  \\   \large \tt  : \implies \:  \frac{44}{2} =  17 +  b\\  \\ \large \tt  : \implies \:  \frac{ \cancel{44} \:  \: 22}{ \cancel2} =  17 +  b\\  \\ \large \tt  : \implies \:  22=  17 +  b\\  \\ \large \tt  : \implies \:  22 -   17  = breadth\\  \\   \large\therefore \sf \red{ \underline{ \underline{ \blue{ \sf \: breadth = 5m}}}} \\

____________________________________________

Similar questions