Math, asked by saranshsahni7, 8 hours ago

A man deposits Rs.900 per month in a RD account at 8%pa. If he gets Rs.1800 as interest then find time of maturity in years. plz answer correctly.​

Answers

Answered by MathCracker
13

Question :-

A man deposits Rs.900 per month in a RD account at 8%pa. If he gets Rs.1800 as interest then find time of maturity in years. plz answer correctly.

Solution :-

Given :

  • Simple interest (SI) = 1800
  • Principal (P) = 900
  • Rate of change (R) = 8%

Need to find :

  • Number of years (N)

Using formula

 {\bigstar\:{\boxed{\rm{SI= \frac{PNR}{100}}}}}

Now, Substituting all given values

\sf:\longmapsto{1800 =  \frac{900 \times 8 \times N}{100} }   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\   \\ \sf:\longmapsto{1800 \times 100 = 900  \times 8 \times N} \\  \\ \sf:\longmapsto{180000 = 7200 \times N} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \sf:\longmapsto{ N=  \frac{1800 \cancel{00}}{72 \cancel{00}} } \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \sf:\longmapsto{N =   \cancel\frac{180}{72} } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:   \\  \\ \bf:\longmapsto \red{ N= 2.5} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

  • Number of years is 2.5years.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Learn more from brainly :

Deepa has a 4-year recurring deposit account in a bank and deposits Rs. 1,800 per month. If she gets Rs. 1,08,450 at the time of maturity, find the rate of interest.

https://brainly.in/question/37751664

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Given that,

↝ Amount deposited per month, P = Rs 900

↝ Rate of interest, r = 8 % per annum

↝ Interest received, I = Rs 1800.

Let assume that

↝ Rs 900 per month is invested for 'n' months.

We know,

Interest received on a certain sum of money Rs P invested at the rate of r % per annum for n months is

\bold{ \red{\bf\implies  \red{\:{\boxed{\text{I} = \text{P} \times \dfrac{ \text{n(n + 1)}}{2 \times 12} \times \dfrac{ \text{r}}{100} }}}}}

So, on substituting the values, we get

\rm :\longmapsto\:1800 =900 \times \dfrac{ \text{n(n + 1)}}{2 \times 12} \times \dfrac{ \text{8}}{100}

\rm :\longmapsto\:2  =   \dfrac{ \text{n(n + 1)}}{3} \times \dfrac{ \text{1}}{100}

\rm :\longmapsto\:n(n + 1) = 600

\rm :\longmapsto\: {n}^{2} + n  = 600

\rm :\longmapsto\: {n}^{2} + n -  600 = 0

\rm :\longmapsto\: {n}^{2} +25 n - 24n -  600 = 0

\rm :\longmapsto\:n(n + 25) - 24(n + 25) = 0

\rm :\longmapsto\:(n + 25)(n - 24) = 0

\bf\implies \:n \:  =  \: 24 \: months

\bf\implies \:n \:  =  \: 2 \: years

Similar questions