Math, asked by goswamiaakash6002, 3 months ago

A man finds the angle of elevation of a tower to be 60°. When he walks away at a distance of 50m he finds the angle to be 30°, then the height of the tower is​

Answers

Answered by pandaXop
31

Height = 253

Step-by-step explanation:

Given:

  • Angle of elevation of tower is 60°.
  • After walking 50 m away from tower it changes to 30°.

To Find:

  • What is height of tower ?

Solution: Let the height of tower AB be h m and distance between the man initial position and foot of tower be x m. Therefore,

  • AB (perpendicular) = h

  • DB (base) = x

  • ∠ABD = 90°

  • ∠ADB (angle of elevation) = 60°

[ Now he walked 50 m away from point D. Let he is at now point C. ]

  • DC = 50 m

  • BC = DB + DC

  • ∠ACB (angle of elevation) = 30°

In ∆ABD , using tanθ

tanθ = Perpendicular/Base

➯ tan60° = AB/DB

➯ √3 = h/x

➯ √3x = hㅤㅤㅤㅤㅤ(eqⁿ i)

Now in ∆ABC , again by tanθ

➯ tan30° = AB/BC

➯ 1/√3 = h/x + 50

➯ x + 50 = √3h

➯ x + 50 = √3 × √3x

➯ 50 = 3x – x

➯ 50/2 = x

➯ 25 m = x

Putting the value of x in eqⁿ (i)

\implies{\rm } 3x = h

\implies{\rm } 3 × 25 = h

\implies{\rm } 253 = h

Hence, the height of tower is 25√3 m.

Attachments:
Answered by BrainlyRish
19

Given : The angle of elevation of a tower to be 60° & He walks away at a distance of 50m he finds the angle to be 30° .

Exigency To Find : The Height of the tower .

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

[ Note : Kindly refer to given attachment ( image ) . ]

❍ Let's Consider the Height of Tower AB be h and his initial ( or first ) position DB be x .

\dag\:\:\it{ As,\:We\:know\:that\::}\\

\qquad \dag\:\:\bigg\lgroup \sf{ Tan\:\theta \:: \dfrac{Perpendicular}{Base} }\bigg\rgroup \\\\

Now ,

⠀⠀⠀⠀⠀In \triangle ABD .

\qquad:\implies \sf Tan 30^\circ \:\:= \: \dfrac {  AB }{BC } \\

⠀⠀⠀⠀⠀OR,

\qquad:\implies \sf Tan 30^\circ \:\:= \: \dfrac {  h}{x + 50 } \\

\qquad:\implies \bf Tan 30^\circ \:\:= \: \dfrac {  h}{x + 50 } \qquad \longrightarrow \:\:Eq.1\:\\

Now ,

⠀⠀⠀⠀⠀In \triangle ABC .

\qquad:\implies \sf Tan 60^\circ \:\:= \: \dfrac {  AB }{DB } \\

⠀⠀⠀⠀⠀OR,

\qquad:\implies \sf Tan \:60^\circ \:\:= \: \dfrac {  h}{x  } \\

\qquad:\implies \bf Tan \:60^\circ \:\:= \: \dfrac {  h}{x  } \qquad \longrightarrow \:\:Eq.2\:\\

⠀⠀⠀⠀⠀Now from Eq.1 & Eq.2 :

\qquad:\implies \bf Tan 30^\circ \:\:= \: \dfrac {  h}{x + 50 } \qquad \longrightarrow \:\:Eq.1\:\\

\qquad:\implies \bf Tan \:60^\circ \:\:= \: \dfrac {  h}{x  } \qquad \longrightarrow \:\:Eq.2\:\\

\qquad:\implies \sf \dfrac{Tan 60^\circ}{Tan 30^\circ}  \:\:= \: \dfrac{\dfrac{h}{x}}{\dfrac {  h}{x + 50 }} \:\\

\qquad:\implies \sf \dfrac{Tan 60^\circ}{Tan 30^\circ}  \:\:= \: \dfrac{\dfrac{\cancel{h}}{x}}{\dfrac {  \cancel {h}}{x + 50 }} \:\\

\qquad:\implies \sf \dfrac{Tan 60^\circ}{Tan 30^\circ}  \:\:= \: \dfrac{x}{x + 50 } \:\\

Now ,

⠀⠀⠀⠀⠀━━  Tan \:60^\circ \:= \:\sqrt {3} \:\& \:\: Tan \:30^\circ \:= \:\dfrac{1}{\sqrt{3}} \\

⠀⠀⠀⠀⠀⠀\underline {\boldsymbol{\star\:Now \: By \: Substituting \: the \: known \: Values \::}}\\

\qquad:\implies \sf \dfrac{Tan 60^\circ}{Tan 30^\circ}  \:\:= \: \dfrac{x}{x + 50 } \:\\

\qquad:\implies \sf \dfrac{\sqrt{3}}{\dfrac{1}{\sqrt{3}}}  \:\:= \: \dfrac{x}{x + 50 } \:\\

\qquad:\implies \sf x + 50 =\:3x \: \:\\

\qquad:\implies \sf 50 = \:3x - x \: \:\\

\qquad:\implies \sf 2x = 50  \: \:\\

\qquad:\implies \sf x = \cancel {\dfrac{50}{2}}\: \:\\

\qquad \longmapsto \frak{\underline{\purple{\:x = 25 \:m \: }} }\bigstar \\

Now ,

⠀⠀⠀⠀⠀━━ From Eq.2 :

\qquad:\implies \bf Tan \:60^\circ \:\:= \: \dfrac {  h}{x  } \qquad \longrightarrow \:\:Eq.2\:\\

\qquad:\implies \sf Tan \:60^\circ \:\:= \: \dfrac {  h}{x  } \qquad \:\\

\qquad:\implies \sf x \times Tan \:60^\circ \:\:= \: h \qquad \:\\

\qquad:\implies \sf 25 \times Tan \:60^\circ \:\:= \: h \qquad \:\\

\qquad:\implies \sf 25 \times \sqrt {3}\:\:= \: h \qquad \:\\

\qquad \longmapsto \frak{\underline{\purple{\:h = 25\sqrt {3}\:m\:\:}} }\:\:\bigstar \\

Therefore,

⠀⠀⠀⠀⠀\therefore {\underline{ \mathrm {\:Height \:of\:Tower \:is\:\bf{25\sqrt{3} \:m \:}}}}\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Attachments:
Similar questions