Math, asked by Shreyash17139, 4 months ago

A man has a Recurring Deposit Account in a
bank for 3.5 years. If the rate of interest is
12% per annum and the man gets 10,206
on maturity, find the value of monthly
instalments.​

Answers

Answered by brainlystar4847
5

Step-by-step explanation:

mark as brainalist Please

Attachments:
Answered by MissSolitary
23

 \underline{ \underline{{ \huge{ \mathtt{Q}}} \mathtt{UESTION -}}}

A man has a recurring deposit account in a bank for 3.5 years. If the rate of interest is 12% per annum and the man gets ₹ 10,206 on maturity, find the value of monthly ins.tallments.

 \underline{ \underline{{ \huge{ \mathtt{G}}} \mathtt{IVEN -}}}

  • number of months (n) = 3.5 = 3½ years to months

 \mathtt{ 3 \frac{1}{2} =  \frac{7}{2}  \times 12  \implies \: 42 \: months  } \\

  • Rate of interest (r) = 12%
  • Maturity value (M.V) = ₹ 10,206

 \underline{ \underline{{ \huge{ \mathtt{T}}} \mathtt{O } \:  \:  \: {{ \huge{ \mathtt{F}}} \mathtt{IND -}}}}

  • Value of monthly ins.tallments (principal amount).

 \underline{ \underline{{ \huge{ \mathtt{F}}} \mathtt{ ORMULA } \:  \:  \: {{ \huge{ \mathtt{U}}} \mathtt{SED -}}}}

 \underline{ \boxed{ \gray{ \mathtt{M.V = P \times n +  \frac{P \times n(n + 1)}{2 \times 12}  \times  \frac{r}{100} }} }}\\

where,

M .V is the maturity value.

P is the principal.

n is the number of months.

r is the rate of interest.

 \underline{ \underline{{ \huge{ \mathtt{S}}} \mathtt{OLUTION -}}}

 \mathtt{M.V = P \times n +  \frac{P \times n(n + 1)}{2 \times 12} \times  \frac{r}{100}  } \\  \\  \mathtt{ \implies{₹ \:  10,206 =P \times 42 +  \frac{P \times 42(42 + 1)}{2 \times 12} \times  \frac{12}{100}   }} \\  \\  \mathtt{ \implies{10206 = P \times 42 +  \frac{P \times 42 \times 43}{2 \times 12}  \times  \frac{12}{100} }} \\  \\  \mathtt{ \implies{10206  = 42 \: P +  \frac{P \times   \cancel{42} ^{21}  \times 43}{ \cancel2  \times  \cancel{12}}  \times  \frac{ \cancel{12}}{100}  }} \\  \\  \mathtt{ \implies{10206 = 42 \: P +  \frac{903 \:P }{100} }} \\  \\  \mathtt{ \implies{10206 =  \frac{4200 \: P + 903 \: P}{100} }} \\  \\   \mathtt{ \implies{10206 =  \frac{5103 \: P}{100} }} \\  \\  \mathtt{ \implies{ \frac{ \cancel{10206} ^{2}  \times 100}{ \cancel{5103}} =  P}} \\  \\  \boxed{ \purple{ \mathtt{ \therefore{P = ₹  \: 200 \:  \:  \: ans.}}}}

_____________________

@MissSolitary✌️

_____

Similar questions