Math, asked by anuragele1979, 9 months ago

a man invested rupees 25000 at a certain rate of CI per annum to get rupees 29160 in 2 years find the rate of interest​

Answers

Answered by Anonymous
15

S O L U T I O N :

\bf{\large{\underline{\bf{Given\::}}}}}

  • Principal, (P) = Rs.25000
  • Amount, (A) = Rs.29160
  • Time, (n) = 2 years

\bf{\large{\underline{\bf{To\:find\::}}}}}

The rate of interest.

\bf{\large{\underline{\bf{Explanation\::}}}}}

We know that formula of the compounded annually :

\boxed{\bf{A=P\bigg(1+\frac{R}{100} \bigg)^{n} }}}}

A/q

\longrightarrow\tt{29160=25000\bigg(1+\dfrac{R}{100} \bigg)^{2} }\\\\\\\longrightarrow\tt{\dfrac{2916\cancel{0}}{2500\cancel{0}} =\bigg(1+\dfrac{R}{100} \bigg)^{2}} \\\\\\\longrightarrow\tt{\dfrac{2916}{2500} =\bigg(1+\dfrac{R}{100} \bigg)^{2} }\\\\\\\longrightarrow\tt{\sqrt{\dfrac{2916}{2500} } =1+\dfrac{R}{100} }\\\\\\\longrightarrow\tt{\dfrac{54}{50} =1+\dfrac{R}{100} }\\\\\\\longrightarrow\tt{\dfrac{54}{50} -1=\dfrac{R}{100}}\\\\\\\longrightarrow\tt{\dfrac{54-50}{50} =\dfrac{R}{100}}

\longrightarrow\tt{\dfrac{4}{50} =\dfrac{R}{100} }\\\\\\\longrightarrow\tt{50R=400\:\:\:\underbrace{\sf{Cross-multiplication}}}\\\\\\\longrightarrow\tt{R=\cancel{\dfrac{400}{50} }}\\\\\\\longrightarrow\bf{R=8\%}

Thus;

The rate of the interest will be 8% p.a .

Answered by Anonymous
11

{\huge{\bf{\red{\underline{Solution:}}}}}

{\bf{\blue{\underline{Given:}}}}

  • Principal = 25000Rs
  • Amount = 29160
  • Time = 2 years

{\bf{\blue{\underline{Given:}}}}

  • Rate of interest =?

{\bf{\blue{\underline{Formula\:Used:}}}}

 \dagger \:  \:  \boxed{\sf{ A = P \bigg(1 +  \frac{R}{100}  \bigg) ^{T} }} \\ \\

{\bf{\blue{\underline{Now:}}}}

 : \implies{\sf{ 29160 = 25000 \bigg(1 +  \frac{R}{10} \bigg) ^{2}  }} \\ \\

 : \implies{\sf{ \frac{29160}{25000}  = \bigg(1 +  \frac{R}{10} \bigg) ^{2}  }} \\ \\

 : \implies{\sf{ \frac{2916}{2500}  = \bigg(1 +  \frac{R}{10} \bigg) ^{2}  }} \\ \\

 : \implies{\sf{ \bigg( \frac{54}{50}  \bigg)  ^{2} = \bigg(1 +  \frac{R}{10} \bigg) ^{2}  }} \\ \\

If the exponent are equal bases will also be equal,

 : \implies{\sf{  \frac{54}{50}    = 1 +  \frac{R}{100} }} \\ \\

 : \implies{\sf{   \frac{R}{100} =  \frac{54}{50}   - 1}} \\ \\

 : \implies{\sf{   \frac{R}{100} =  \frac{54 - 50}{50}  }} \\ \\

 : \implies{\sf{   \frac{R}{100} =  \frac{4}{50}  }} \\ \\

 : \implies{\sf{   R \times 50} =  4\times 100  } \\ \\

 : \implies{\sf{   R \times 50} =  400  } \\ \\

 : \implies{\sf{   R } =   \frac{400}{50}  } \\ \\

 : \implies{\sf{   R } =   8\%  } \\ \\

  \dagger \:  \boxed{\sf{   \purple{Rate \: of \: interset \:   =   8\%  }}} \\ \\

Similar questions