Math, asked by saurankhan, 11 months ago

a man invested rupees 30000 in two types of bound on 13 and 5% on the other he get 7% if his total earning rupees 2,000 find his investment in each type of bound​

Answers

Answered by GauravSaxena01
2

Given

[x 30000−x][0.05 / 0.07]=1800:

[x ×(0.05)+(30000−x)×0.07]=1800

0.05x+2100−0.07x=1800

2100−0.02x=1800

2100−1800=0.02x

0.02x=300

→x=1/ 0.02× 300

Solving for x, x=15,000 and

30,000-x

=> 15,000.

the investment is decided equally into 2 sums of RS 15000 each

===========

@GauravSaxena


Anonymous: hi bro
Anonymous: how r u ?
Answered by Anonymous
0

Step-by-step explanation:

Question:-

the length of a rectangle is 8m more than its breadth if its perimeter is 128m, find its length , breadth and Area

Answer:-

The length of Rectangle is 36 m

The breadth of rectangle is 28 m

The area of Given rectangle is 1008 m².

To find:-

Length and breadth of rectangle

Area of rectangle

Solution:-

Let the breadth be x

Length = 8 + x

Perimeter = 128 m

\boxed{ \large{ \mathfrak{perimeter = 2(l + b)}}}

According to question,

\large{ \tt: \implies \: \: \: \: \: 2(8 + x + x) = 128}

\begin{gathered} \large{ \tt: \implies \: \: \: \: \: 8 + 2x = \frac{128}{2} } \\ \end{gathered}:

\large{ \tt: \implies \: \: \: \: \: 8 + 2x = 64}

\large{ \tt: \implies \: \: \: \: \: 2x = 64 - 8}

\large{ \tt: \implies \: \: \: \: \: 2x = 56}

\large{ \tt: \implies \: \: \: \: \: x = 28}

The breadth of rectangle is 28 m

Length = 8 + x = 28 + 8 = 36 m

\large{ \boxed{ \mathfrak{area = l \times b}}}

\large{ \tt: \implies \: \: \: \: \: area = 28\times 36}

\large{ \tt: \implies \: \: \: \: \: area = 1008 \: {m}^{2} }

The area of Given rectangle is 1008 m².

Similar questions