Physics, asked by mitalli, 3 months ago

A man lifts a brick of mass 5 kg from the floor to a shelf 2 meters high. how much work is done ?​

Answers

Answered by BrainlyRonaldo
6

Given

A man lifts a brick of mass 5 kg from the floor to a shelf 2 meters high

To Find

Work done

Solution

We know that

\red{\sf \longrightarrow W=mgh}

Here

  • W = Work done
  • m = Mass
  • g = Acceleration of gravity
  • h = Height

Units

  • W = Joule (J)
  • m = kilogram (kg)
  • g = metre/square second (m/s²)
  • h = metre (m)

According to the question

We are asked to find the work done

Therefore

We must find "W"

Given that

A man lifts a brick of mass 5 kg from the floor to a shelf 2 meters high

Hence

  • m = 5 kg
  • h = 2 m

We know that

  • g = 9.8 m/s²

Substituting the values

We get

\blue{\sf \longrightarrow W=5 \times 9.8 \times 2 \ J}

\green{\sf \longrightarrow W=49 \times 2 \ J}

Therefore

\pink{\sf \longrightarrow W=98 \ J}

Hence

Work done = 98 J


Anonymous: Splendid :)
BrainlyRonaldo: Thank you !!
Answered by Anonymous
4

\; \; \; \; \; \; \; \; \;\orange \bigstar{\Large{\bold{\bf{Required \; Solution}}}}\orange \bigstar

{\large{\bold{\rm{\underline{Given \; that}}}}}\red \bigstar

✠ Mass of brick = 5 kg.

✠ Height = 2 metres

{\large{\bold{\rm{\underline{To \; find}}}}}\red \bigstar

✠ Work done.

{\large{\bold{\rm{\underline{Solution}}}}}\green \bigstar

✠ Work done = 98 J

{\large{\bold{\rm{\underline{Using \; concept}}}}}\pink \bigstar

✠ Formula to find work done.

{\large{\bold{\rm{\underline{Using \; formula}}}}}\pink \bigstar

✠ W = mgh

{\large{\bold{\rm{\underline{Full \; Solution}}}}}\green \bigstar

~ Let us use formula to find work done and let's put the values,

⇝ W = mgh

\; \; \; \; \; \; \; \; \; \; \; \; \;{\sf{Where,}}

✨ W denotes work done

✨ m denotes mass

✨ g denotes acceleration due to gravity

✨ h denotes height

\; \; \; \; \; \; \; \; \; \; \; \; \;{\sf{Here,}}

✨ Work done is ?

✨ m is 5 kg

✨ Value of g is 9.8 m/s²

✨ h is 2 metres

⇝ W = 5(9.8)(2)

⇝ W = 5 × 9.8 × 2

⇝ W = 10 × 9.8

⇝ W = 98 Joules

\; \; \; \; \;{\boxed{\boxed{\bold{\bf{98 \: J \: is \: work \: done}}}}}

\; \; \; \; \; \; \; \; \;\orange \bigstar{\Large{\bold{\bf{Additional \; information}}}}\orange \bigstar

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Number \: of \: SI \: units \: are \: 7}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Ampere \: is \: the \: unit \: of \: current \: electricity}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto SI \: unit \: of \: Young's \: modulus \: of \: elasticity \: is \: Newton/m^{2}}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto SI \: unit \: of \: pressure \: is \: Pascal}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Curie \: is \: the \: unit \: of \: radio \: activity}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Decibel \: is \: the \: unit \: of \: intensity \: of \: sound}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto SI \: unit \: of \: electric \: charge \: is \: coulomb}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto SI \: unit \: of \: resistance \: is \: ohm}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto SI \: unit \: of \: acceleration \: is \: ms^{-2}}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Kinetic \: energy \: is \: given \: by \: \dfrac{1}{2}mv^{2}}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Value \: of \: G \: is \: 6.673 \times 10^{-11}Nm^{2}kg{-3}}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Dimensional \: formula \: for \: universal \: gravitational \: constant \: is \: M^{-1} L^{3} T^{-2}}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto The \: unit \: of \: force \: constant \: k \: of \: a \: spring \: is \: \dfrac{N}{m}}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Sir \: Cavendish \: was \: the \: first \: to \: gave \: value \: of \: G \: experimentally}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto The \: Young's \: modulus \: for \: perfect \: rigid \: body \: is \: infinite}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Density \: is \: the \: ratio \: of \: \dfrac{Volume}{Mass}}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Maxwell \: is \: unit \: of \: magnetic \: flux}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto SI \: unit \: of \: magnetic \: flux \: is \: Weber}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto SI \: unit \: of \: surface \: tension \: is \: \dfrac{N}{m}}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto SI \: unit \: of \: mechanical \: power \: is \: Watt}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto 1 \: horsepower \: = \: approx \: 746 \: watts}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Momentum \: is \: measured \: as \: the \: product \: of \: Mass \: and \: velocity}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto \pi \: 'pi' \: is \: calculated \: by \: Aryabhatta}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto One \: J \: = \: 0.24 \: cal}}}


Anonymous: Perfect :)
Anonymous: Thank ya'
Similar questions