Math, asked by Anonymous, 4 months ago

A man loses 20% of his money. After spending 25% of the remaining, he has ₹510 left with him.
How much money did he originally have?

Answers

Answered by Anonymous
11

Given:

  • A man loses 20% of his money. After spending 25% of the remaining, he has ₹510 left with him. How much money did he originally have?

AnsweR:

  • ₹ 850

Solution:

Let the original amount be ₹ x

 \\  \sf \: Amount \:  lost = 20 \%  \: of \:  ₹  \:  \\ \\  \implies  \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: x = ₹  \bigg( \frac{20}{100}  \times x \bigg)\\ \\   \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = ₹ \:  \frac{x}{5}  \:  \:  \:

 \\  \sf \: Remainder = ₹ \bigg( x - \frac{ x }{5}  \bigg) \:  \:  = ₹ \:  \frac{4x}{5}  \\

 \\ \sf Expenditure = 25 \% \: of  \: the \:  remainder \:  \\  \\ \sf \:  \:  \:  \:  \:  \:   = 25\% \: of \:  ₹ \:  \frac{4x}{5}  \\  \\  \sf \:   \:  \:  \:  \:  \:  \:  \:  \:  \: =  \: ₹ \bigg( \frac{25}{100}  \times  \frac{4x}{5}  \bigg) \\  \\ \sf \:   \:  \:  \:  \:  \:  \:  \:  \:  \: =  \: ₹  \:  \frac{x}{5}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\

 \\  \sf \: Amount  \: left = ₹ \:  \bigg( \frac{4x}{5}  -  \frac{x}{5}  \bigg) \\  \\  \sf \: \:  \:  \:  \:  \:  \:  \:   = ₹  \: \frac{3x}{5}  \\

As per given question,

 \\  \sf \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  ₹ \:  \frac{3x}{5}  = ₹ \: 510 \\  \\   \:  \implies \sf \:  \:  \:  \frac{3x}{5}  = 510 \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \: \sf \implies \:  \:  \:  \:  \: x =  \frac{510 \times 5}{3} \\   \\   \:  \:  \: \sf \implies \: \:  \:  \:  \:  \:   x \:  = ₹ \: 850 \\

⠀⠀⠀⠀⠀⠀Hence, the man had ₹ 850.

________________________________________

⠀⠀⠀⠀⠀⠀⠀⠀Hope it helps you!!

⠀⠀⠀⠀⠀⠀Stay home! Stay Safe!!!

Similar questions