Physics, asked by tatya, 1 year ago

a man measures time period of a pendulum (T) in stationary lift. If the lift moves upward with acceleration g/4, then new time period will be......
(options are given below in the photo)

Attachments:

Answers

Answered by Abhinavmsiva
55
The time period of a pendulum when acceleration present is given by

t = 2\pi \sqrt{ \frac{l}{g + a} }

here a= g/4
therefore g+a becomes
5g/4

there for T new = 2/√5x T

we took g+a as acceleration is upwards it would be negative if acceleration is downwards.

tatya: thanks
Abhinavmsiva: please mark brainliest
Answered by aryan073
5

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\mathtt{\huge{\underline{\red{Answer\: :}}}}

 \:  \large \green { \bold{ \underline { \: step \: by \: step \: explaination}}}

\implies\displaystyle\sf{when\: the \: lift \:is \: moving \: upward \: and\: then \: from \: Newton's \: second \: law \: of \: motion }

\implies\displaystyle\sf{F=ma}

\implies\displaystyle\sf{F=-ma}

\implies\displaystyle\sf{-ma=mg-R}

\implies\displaystyle\sf{R=mg+ma}

\implies\displaystyle\sf{R=m(g+a)}

\implies\displaystyle\sf{T=2π\sqrt{\dfrac{L}{g}}  \: and \: T'=2π\sqrt{\dfrac{L}{g+a}}}

\implies\displaystyle\sf{when \: lift \: is \: stationary \: the \: time \: period \: is }

\implies\displaystyle\sf{T=2π\sqrt{\dfrac{L}{g}}}

\implies\displaystyle\sf{Also\: g'=g+a}

\implies\displaystyle\sf{g+\dfrac{g}{4}=\dfrac{5g}{4}}

\implies\displaystyle\sf{\dfrac{T}{T'}=\dfrac{\sqrt{5}{4g}}{g}=\dfrac{\sqrt5}{2}}

\implies\displaystyle\sf{ T'=\dfrac{2}{\sqrt5}T}

Similar questions