Physics, asked by godfather2456, 1 year ago

A man misses a train by 1 hour, if he travels at 8 km/h. If he increases his speed to 10 km/h he still misses his train by 24 minutes. At what minimum speed should he travel so that he catches the train?

Answers

Answered by Avengers00
15
\underline{\underline{\Huge{\textbf{Solution:}}}}

\sf\textsf{Given,}\\<br /><br />\underline{\textit{Statement-1:}}\\<br /><br />\sf\textsf{ A man misses a train by 1 hour, if he} \\\sf\textsf{travels at 8 km/h}

\underline{\textit{Statement-2:}}\\<br /><br />\sf\textsf{ If he increases his speed to 10 km/h,}\\\sf\textsf{he still misses his train by 24 minutes}

\sf\textsf{Minimum speed required to catch the}\\\sf\textsf{train on time = ? kmph }

\text{\textdagger} \: \sf\textsf{ It is clear from the given date that,} \\\sf\textbf{Minimum Speed Required $&gt;$ 10 kmph}

\textsf{We have,}

\boxed{\begin{minipage}{7 cm}\begin{aligned}\bigstar \: \bf Speed \: \: &amp;= \: \: \tt \dfrac{Distance\: covered}{time\: taken} \\\\\bf \implies time\: taken\: \: &amp;=\: \: \tt \dfrac{Distance\: covered}{Speed}\end{aligned}\end{minipage}}
\\
\underline{\LARGE{\texttt{Step-1:}}}

\sf\textsf{Assume a variable for distance to the train}\\\sf\textsf{ and time taken to catch the train on Time}

\sf\textsf{Let distance to the train be \textbf{'x' km}}

\sf\textsf{Let the time taken by man to catch the train}\\\sf\textsf{on time be \textbf{'t' s}}
\\
\underline{\LARGE{\texttt{Step-2:}}}

\sf\textsf{Rewrite Statement-1}

\sf\mathsf{t \: \: \: = \: \: \: \dfrac{x}{4}\underbrace{ - \: \: \: \: 1}_{missed \: by \: 1 \: Hr}}

\implies \mathbf{t+1 = \dfrac{x}{10}} ———[1]
\\
\underline{\LARGE{\texttt{Step-3:}}}

\sf\textsf{Express 24 minutes in Hours}

\boxed{\begin{minipage}{5 cm}\begin{aligned}<br /><br />\bigstar \: \; \bf 1 \: Hour \: &amp;= \bf \: 60\: minutes\\\implies \: \sf 1 \: Minute \: &amp;= \: \sf \dfrac{1}{60} Hr<br /><br />\end{aligned}\end{minipage}}

\implies \mathsf{24 minutes = 24 \times \dfrac{1}{60} Hour}

\therefore \mathbf{24 minutes = \dfrac{2}{5} Hour}
\\
\underline{\LARGE{\texttt{Step-4:}}}

\sf\textsf{Rewrite Statement-2}

\sf\mathsf{t \: \: \: = \: \: \: \dfrac{x}{10}\underbrace{ - \: \: \: \: \frac{2}{5}}_{missed \: by \: \frac{2}{5} \: Hr(=\: 24 min)}}

\implies \bf \mathbf{t+\dfrac{2}{5} = \dfrac{x}{10}} ———[2]
\\
\underline{\LARGE{\texttt{Step-5:}}}

\sf\textsf{Do [2] - [1] to get value of \textbf{x}}

\begin{aligned}t+1 &amp;= \dfrac{x}{8}\\ \\ t+\dfrac{2}{5}&amp;= \dfrac{x}{10}\\ \underline{ - \quad - \quad } &amp; \underline{\: \: \: \: - \qquad \quad } \\ 1 - \dfrac{2}{5}&amp; =\dfrac{x}{8} - \dfrac{x}{10}\end{aligned}

\begin{aligned}\implies \mathsf{\dfrac{3}{5}} &amp;= x\mathsf{\left(\dfrac{1}{8}-\dfrac{1}{10}\right)}\\ \\ \implies \mathsf{\dfrac{3}{5}} &amp;= x\mathsf{\left(\dfrac{2}{80}\right)} \\ \\ \implies \mathsf{\dfrac{3}{5}}&amp; = x\mathsf{\left(\dfrac{1}{40}\right)} \end{aligned}

\sf\textsf{Cross Multiply}

\implies \mathsf{5x = 120}

\implies \mathbf{x = 24 kmph}
\\
\underline{\LARGE{\texttt{Step-6:}}}

\sf\textsf{Plug in 24 for \textbf{x} in [1] to get value of \textbf{t}}

\implies \mathsf{t+1 = \dfrac{24}{8}}

\implies \mathsf{t+1 = 3}

\therefore \mathbf{t = 2 Hrs}
\\
\underline{\LARGE{\texttt{Step-7:}}}

\sf\textsf{Find the minimum speed with which}\\\sf\textsf{man has to travel to catch the train on time}

\boxed{\mathbf{\bigstar \: \; Required\: Speed = \dfrac{x}{t}\: kmph}}

\sf\textsf{Substitute Values}

\implies \textsf{Required Speed = $\dfrac{24}{2}$}

\implies \textsf{Required Speed = 12 kmph}
\\
\blacksquare\: \; \sf\textsf{The minimum speed with which}\\\sf\textsf{man has to travel so that he can catch} \\ \sf \textsf{the train on time = \: }\Large{\underline{\Large{\textbf{12 kmph}}}}\quad\boxed{ \large{{ \cdot}_{ \smile}{\cdot}}}

muakanshakya: Perfect ! Latex Master xD :)
Answered by biswajit4074
0

Answer:

Explanation:

Let the distance travelled be X km.

As per given conditions

X/4 -X/5 =3/5

On solving,

X= 12 km.

X/4 = 3 hrs

He has to reach station in 2 hrs .

He has to travel at the Speed of 6 kmph in order to reach in time exactly.

Similar questions