Physics, asked by ARRUYADAV, 2 months ago

A man moves along the x-axis such that its velocity is v =1/x. If he is initially at x = 2 m, find the time when
he reaches x = 4 m
(A) 6 sec
(B) 4 sec
(C)3 sec
(D) he can't reach x = 4 m​

Answers

Answered by Anonymous
44

\maltese\:\underline{\underline{\sf AnsWer :}}\:\maltese

Given;

\longrightarrow\:\:\tt v = \dfrac{1}{x} \\

Also we know that velocity is written as;

\longrightarrow\:\:\tt v = \dfrac{dx}{dt} \\

Now,

\longrightarrow\:\:\tt  \dfrac{dx}{dt} = \dfrac{1}{x} \\

By cross multiplying we get :

\longrightarrow\:\:\tt  dt = x.dx \\

Now, integrate both the sides :

[tex]\longrightarrow\:\:\displaystyle \tt\int\limits_{0}^{t}dt=\int\limits_{2}^{4} x.dx \\ [/tex]

\longrightarrow\:\:\displaystyle  \tt t=\left.  \dfrac{ {x}^{2} }{2} \right| _{2}^{4}  \\

\longrightarrow\:\:\displaystyle  \tt t= \dfrac{ {(4)}^{2} }{2}   -  \frac{ {(2)}^{2} }{2} \\

\longrightarrow\:\:\displaystyle  \tt t= \dfrac{ 16 }{2}   -  \frac{ 4 }{2} \\

\longrightarrow\:\:\displaystyle  \tt t= \dfrac{ 16 - 4 }{2}  \\

\longrightarrow\:\:\displaystyle  \tt t= \dfrac{ 12 }{2}  \\

\longrightarrow\:\: \underline{ \underline{\displaystyle  \tt t= 6 \: s }}\\

Hence, the option (A) t = 6 seconds is a correct answer.

Answered by TrueRider
34

Answer:

 \bf \huge \red{(A) \: 6sec}

Explanation:

 \bf \: We \: know \: that,

  \bf \: v=d \times dt

 \bf \: so,

 \bf1x=d \times dt

 \bf \: Then,

 \bf∫dt=∫xdx

\bf\displaystyle  \ t=\left.  \dfrac{ {x}^{2} }{2} \right| _{2}^{4}  \\

 \bf \color{red}=>x=6sec

Similar questions