Math, asked by laxmanrimal77, 3 months ago

a man observes the top of a building 52m high situated in front of him and finds the angle of elevation to be 30degree . if the distance between man and building is 86m find height of the men

Answers

Answered by snehaprajnaindia204
4

\bf{Hope \; it \; helps \; you ~☆}

Attachments:
Answered by Raftar62
2

Answer:

2.347 m

Used: tan30° = 1/√3. and √3 = 1.732

Step-by-step explanation:

\bold{ \red{Given:}} \\  \bold{Height \: of \: building \: 52m, }  \\  \bold{angle \: of \: elevation \: 30° \: and \: distance \: between \: man \: and \: building \: is \: 86m.} \\  \bold{ \red{Refer \: to \: the \: attachment:}} \\ \bold{ AE = height \: of \: building \:  =  \: 52m}  \\ \bold{CD= BE = height \: of \: man \: h(supposed)}  \\  \bold{and \: DE = BC = distance \: between \: man  \: building = 86m} \\  \bold{and \:∠ACB = 30° }  \\  \bold {\underline{In \:  ΔABC, }} \\  \bold{tan∠ACB = tan30° =  \frac{AB}{BC} = \frac{AB}{86}.} \\  \\  \bold{ \implies{ \frac{1}{ \sqrt{3}  }  =\frac{AB}{86}. }} \\  \\ \bold{ \implies{AB =  \frac{86}{ \sqrt{3} } .}} \\  \\ \bold{ \red{Take: \:  \sqrt{3 } = 1.732 }} \\   \bold{ \implies{AB = 49.652 }} \\ \bold{ \red{Since, \: BE + AB = AE}} \\  \bold{ \implies{BE + 49.652 = 52}} \\ \bold{ \implies{BE  =  52 - 49.652 }} \\ \bold{ \implies{ \underline{BE(h)  = 2.347m}}} \\  \green{ \bold{Therefore ,\: (h)height \: of \: man \: is \: 2.347m.}}

Attachments:
Similar questions