Math, asked by Madhuksaranjana, 6 hours ago

A man of 100 kg mass is standing on the the earth of mass 6x10^24 kg & radius 6,400 km. Calculate the gravitational force between them .​

Answers

Answered by vipinkumar212003
1

\blue{\mathfrak{\underline{\large{Given}}}:} \\ mass \: of \: the \: man(m_1) = 100 \: kg =  {10}^{2} \: kg  \\ mass \: of \: the \: earth(m_2) = 6 \times  {10}^{24}  \: kg \\ radius \: of \: earth(r) = 6400km \\  = 6400 \times 1000 \: m \\  = 6.4 \times   {10}^{6}  \: m \\ gravitation \: constant(G) = 6.67 \times  {10}^{ - 11} N { m }^{2}  {kg}^{ - 2}  \\\blue{\mathfrak{\underline{\large{To \: find}}}:} \\ gravitational \: force \: between \: m_1 \: and \: m_2 \\ (F_g) = ? \\ \blue{\mathfrak{\underline{\large{Finding}}}:} \\ F_g = G \frac{m_1m_2}{ {r}^{2} }  \\\\  =  \frac{6.67 \times  {10}^{ - 11} \times  {10}^{2} \times 6 \times  {10}^{24} }{ {(6.4 \times  {10}^{6})}^{2}  }\\  \\  =  \frac{40.02 \times  {10}^{ - 11 + 2 + 24} }{40.96 \times  {10}^{12} } \\ \\  =  \frac{40.02}{40.96}  \times  {10}^{15 - 12} \\ \\  = 0.977 \times  {10}^{3} \\ \\≈977 \: N \\  \\ \red{\mathfrak{ \large{\underline{{Hope \: It \: Helps \: You}}}}} \\ \blue{\mathfrak{ \large{\underline{{Mark \: Me \: Brainliest}}}}}

Similar questions