Math, asked by divyabadodiya23, 18 days ago

A man on the top of a vertical lighthouse observes a boat coming directly towards it. If it takes 10 minutes for the angle of depression to change from 30° to 60° ,how soon it will reach the lighthouse?​

Answers

Answered by mathdude500
18

\large\underline{\sf{Solution-}}

Let assume that AB be the light house of height h m and B be the top of light house.

Let assume that uniform speed of boat be v m/minute.

Let C be the initial position of the boat when angle of depression is 30° and in 10 minutes, Let D be the position of boat at which angle of depression is 60°.

Now, Distance, CD = Speed × time = 10v meter.

Let assume that boat take t minutes more to reach the lighthouse from D.

So, Distance, DA = tv meter.

Now, In right angle triangle ABD

\rm \: tan60 \degree \:  =  \:  \dfrac{AB}{AD}  \\

\rm \:  \sqrt{3}  \:  =  \:  \dfrac{h}{tv}  \\

\rm\implies \:h \:  =  \:  \sqrt{3} \: tv -  -  - (1)  \\

Now, In right angle triangle ABC

\rm \: tan30 \degree \:  =  \:  \dfrac{AB}{AC}  \\

\rm \: \dfrac{1}{ \sqrt{3} }  = \dfrac{h}{10v + tv}  \\

\rm \: \dfrac{1}{ \sqrt{3} }  = \dfrac{ \sqrt{3} \: tv }{(10 + t)v}  \\

\rm \: \dfrac{1}{ \sqrt{3} }  = \dfrac{ \sqrt{3} \: t }{10 + t}  \\

\rm \: 3t = 10 + t \\

\rm \: 2t = 10 \\

\rm\implies \:t \:  =  \: 5 \: minutes \\

So, it means boat will take 5 minutes more from D to reach the lighthouse.

\rule{190pt}{2pt}

\color{green}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\sf Trigonometry\: Table \\ \begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \bf\angle A & \bf{0}^{ \circ} & \bf{30}^{ \circ} & \bf{45}^{ \circ} & \bf{60}^{ \circ} & \bf{90}^{ \circ} \\ \\ \rm sin A & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3}}{2} &1 \\ \\ \rm cos \: A & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\ \\ \rm tan A & 0 & \dfrac{1}{ \sqrt{3} }&1 & \sqrt{3} & \rm \infty \\ \\ \rm cosec A & \rm \infty & 2& \sqrt{2} & \dfrac{2}{ \sqrt{3} } &1 \\ \\ \rm sec A & 1 & \dfrac{2}{ \sqrt{3} }& \sqrt{2} & 2 & \rm \infty \\ \\ \rm cot A & \rm \infty & \sqrt{3} & 1 & \dfrac{1}{ \sqrt{3} } & 0\end{array}}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

Attachments:
Similar questions