Physics, asked by bhpiraju007, 9 months ago

a man runs for first 120m at 6m/s and next 120m at 3m/s in the same direction
a)average velocity?
b)total time?​

Answers

Answered by gamerchiru395
1

Answer:

a. Average speed = Total distance travelled/time

= 240/26.666667

= 8.99m/s.

b. Total time = Total distance travelled / speed

= 240 / 9

= 26.66667sec.

Answered by Anonymous
2

\sf{\underline{\boxed{\blue{\sf✧ Given :- }}}}

  • A man runs 120m at 6m/s.
  • And again he covers 120m with a speed of 3m/s.

\sf{\underline{\boxed{\blue{\sf✧To \: find :- }}}}

  • The average velocity.
  • And total time taken.

\sf{\underline{\boxed{\blue{\sf✧ Solution :- }}}}

For the first part :-

 \sf \: d1 = 120m. \:  \\  \sf \: v(velocity) \:  = 6m</strong><strong>/</strong><strong>s</strong><strong>. \\  \sf \: t1 =  \frac{d1}{v}  =  \frac { \cancel{120}}{ \cancel6} \\  \sf  = 20s

For the second one :-

 \sf \: d2 = 120 \:  \: and \: v = 3m</strong><strong>/</strong><strong>s</strong><strong> \\  \sf \: t2 =  \frac{d2}{3}  =  \frac{ \cancel{ 120}}{ \cancel3}  = 40sec

 \bf \therefore \: </strong><strong>T</strong><strong>otal \: displacement \:  = d1 +d 2 \\  \sf = 120 + 120 = 240m. \\  \sf \therefore \: </strong><strong>T</strong><strong>otal \: time \: taken =( 40 + 20)sec = 60sec \\  \bf \therefore \: </strong><strong>Va</strong><strong>v =  \frac{total \: distance}{ \: total \: time}  =  \frac{ \cancel{240}}{ \cancel{60}}</strong><strong>\</strong><strong>\</strong><strong> </strong><strong>\</strong><strong>s</strong><strong>f</strong><strong> </strong><strong>{</strong><strong>\</strong><strong>underline</strong><strong>{</strong><strong>\</strong><strong>b</strong><strong>o</strong><strong>x</strong><strong>e</strong><strong>d</strong><strong>{</strong><strong> </strong><strong>\</strong><strong>r</strong><strong>m</strong><strong>\</strong><strong>g</strong><strong>r</strong><strong>e</strong><strong>e</strong><strong>n</strong><strong> = 4m</strong><strong>/</strong><strong>s</strong><strong>}</strong><strong>}</strong><strong>}</strong><strong>

Similar questions