Math, asked by Souraykumar, 1 year ago

A man sells an article at a gain of 15%. Had he bought it at 10% loss and sold it for Rs 4 less,he would have gained 25%.the cost price of the article is

Answers

Answered by sanjeevk28012
1

Given :

A man sells an article at a gain of 15%

Had he bought it at 10% loss and sold it for Rs 4 less

And

The last gain% = 25%

To Find :

The cost price of article

Solution :

Let The cost price of article = c.p

Let The selling price of article = s.p

According to question

For 15 % of gain

i.e gain% = \dfrac{s.p-c.p}{c.p}

Or, 15% = \dfrac{s.p-c.p}{c.p}

or,   \dfrac{15}{100} = \dfrac{s.p-c.p}{c.p}

∴   \dfrac{s.p}{c.p}  = 1 + \dfrac{15}{100}

i.e  \dfrac{s.p}{c.p} = \dfrac{115}{100}                 ............1

Similarly

For 10 % of loss

i.e loss% = \dfrac{c.p-s.p}{c.p}

Or, 10% = \dfrac{c.p-(s.p-4)}{c.p}

or,   \dfrac{10}{100} = \dfrac{c.p-(s.p-4)}{c.p}

∴   \dfrac{(s.p-4)}{c.p}  = 1 - \dfrac{10}{100}

i.e   \dfrac{(s.p-4)}{c.p}= \dfrac{90}{100}              ...........2

From, eq 1 and eq 2

\dfrac{(s.p-4)}{s.p}= \dfrac{90}{115}

Or,  115 s.p - 460 = 90 s.p

Or,  115 s.p - 90 s.p = 460

Or,               25 s.p = Rs 460    

selling price = \dfrac{460}{25} = Rs 18.4

So, The selling price of the article =s. p =  Rs 18.4

Again For gain% of 25%

i.e  gain% = \dfrac{s.p-c.p}{c.p}

Or, 25% = \dfrac{s.p-c.p}{c.p}

or,   \dfrac{25}{100} = \dfrac{s.p-c.p}{c.p}

∴   \dfrac{s.p}{c.p}  = 1 + \dfrac{25}{100}

i.e  \dfrac{s.p}{c.p} = \dfrac{125}{100}

∵   s.p = Rs 18.4

So,  \dfrac{18.4}{c.p} = 1.25

∴  c.p = \dfrac{18.4}{1.25}

i.e  cost price = c.p = Rs 14.7

Hence,  The cos price of the article is Rs 14.7   Answer

Similar questions