Math, asked by imankhan3566, 1 year ago

A man standing on the bank of a river observes that the angle of elevation of a tree on the opposite bank is 60° . when the moves 50m.away from the bank, he finds the angle of elevation to be 30° . calculate the height of the tree?

Answers

Answered by Anonymous
56

Let a \bold{\triangle}ABD having AB = height of tree and BC = x.

A man was standing on the bank of river and observes that angle of elevation of tree which is on the opposite bank of river is 60°.

When the man moves 50 m away from the bank i.e. CD the angle of elevation becomes 30° as shown in figure.

We have to calculate the height of the tree.

In \triangleABC

\implies\:\dfrac{AB}{BC}\:=\:\tan\:\theta

\implies\:\dfrac{h}{x}\:=\:\tan60^{\degree}

\implies\:\dfrac{h}{x}\:=\:\sqrt{3}

\implies\:h\:=\:x\sqrt{3} ____ (eq 1)

Similarly,

In \triangleABD

\implies\:\dfrac{AB}{BD}\:=\:\tan\:\theta

\implies\:\dfrac{AB}{BC\:+\:CD}\:=\:\tan\:\theta

\implies\:\dfrac{h}{x\:+\:50}\:=\:\tan30^{\degree}

\implies\:\dfrac{h}{x\:+\:50}\:=\:\dfrac{1}{\sqrt{3}}

\implies\:h\sqrt{3}\:=\:x\:+\:50

\implies\:h\:=\:\dfrac{x\:+\:50}{\sqrt{3}} ____ (eq 2)

From (eq 1) and (eq 2) we get,

\Rightarrow\:x\sqrt{3}\:=\:\dfrac{x\:+\:50}{\sqrt{3}}

\Rightarrow\:3x\:=\:x\:+\:50

As, √3 × √3 = 3

\Rightarrow\:2x\:=\:50

\Rightarrow\:x\:=\:25\:m

Put value of x in (eq 1)

\implies\:h\:=\:25\sqrt{3}\:m

Height of tree is 253 m.

Attachments:
Answered by BrainlyConqueror0901
47
  1. [Figure]

Answer:

\huge{\pink{\green{\sf{\therefore HEIGHT=25\sqrt{3}\:m}}}}

step-by-step explanation:

\huge{\pink{\green{\underline{\red{\sf{SOLUTION-}}}}}}

• In the given question information given about a man standing on the bank of a river and he observes the angle of elevation is 60°.

• After travelling 50 m angle of elevation changes to 30°.

• We have to find the height of tree.

 \underline \bold{Given : } \\  \implies Angle \: of \: elevation \: of  \: tree ( \angle ACB) = 60 \degree \\  \implies distance(DC) = 50m \\  \implies let \: distance (BC) = x \: m \\  \\  \underline \bold{To \:Find : } \\  \implies height \:of \: tree( AB) = ?

• According to given question :

   \bold{In \triangle ABC  : } \\  \implies tan \:  \theta=  \frac{p}{b}  \\  \implies tan  \: 60 \degree =  \frac{h}{x}  \\  \implies  \sqrt{3}  =  \frac{h}{x}  \\  \bold{\implies x =  \frac{h}{ \sqrt{3} } m} \\  \\ \bold {In \triangle ABD : } \\  \implies tan \theta =  \frac{p}{b}  \\  \implies tan \: 30 \degree =  \frac{AB}{BD}  \\  \implies  \frac{1}{ \sqrt{3} }  =  \frac{h}{50 + x}  \\  \implies 50 + x =  \sqrt{3} h \\ \bold {putting \: value \: of \: x }\\  \implies 50 +  \frac{h}{ \sqrt{3} }  =  \sqrt{3} h \\  \implies \frac{50 \sqrt{3} + h }{ \sqrt{3} }  =  \sqrt{3} h \\  \implies 50 \sqrt{3}  + h = 3h \\  \implies 50 \sqrt{3}  = 3h - h \\  \implies h =  \frac{50 \sqrt{3} }{2}  \\  \bold{  \therefore h = 25 \sqrt{3} m}

Attachments:
Similar questions