Math, asked by pranjalsharma7656, 10 months ago

A man starts from the point P(3,-3) and reaches the point Q(0,2) after touching the line 2x+y=7 at R. The least value of PR+RQ is

Answers

Answered by Swarup1998
2

Given: Coordinates of the initial point P are (3,\:-3) and coordinates of the terminal point Q are (0,\:2).

To find: The least value of PR+RQ.

Solution:

Given that, the man starts from the point P and reaches the point Q after touching the straight line 2x+y=7 at R.

We consider the coordinates of the point R be (p,\:q).

Then, 2p+q=7\quad\quad .....(i)

Now, PR=\sqrt{(p-3)^{2}+(q+3)^{2}}

\quad=\sqrt{(p-3)^{2}+(7-2p+3)^{2}}, by (i)

\quad=\sqrt{p^{2}-6p+9+4p^{2}-40p+100}

\quad=\sqrt{5p^{2}-46p+109}

and RQ=\sqrt{(p-0)^{2}+(q-2)^{2}}

\quad=\sqrt{p^{2}+(7-2p-2)^{2}}, by (i)

\quad=\sqrt{p^{2}+4p^{2}-20p+25}

\quad=\sqrt{5p^{2}-20p+25}

\therefore PR+RQ

=\sqrt{5p^{2}-46p+109}+\sqrt{5p^{2}-20p+25}\quad\quad .....(ii)

We have to find the least value of PR+RQ at the point p; to find that point, we differentiate both sides of (ii) by p and equate with zero (0).

\quad\frac{d}{dp}(PQ+QR)=0

\Rightarrow \frac{d}{dp}(\sqrt{5p^{2}-46p+109}+\sqrt{5p^{2}-20p+25})=0

\Rightarrow \frac{10p-46}{2\sqrt{5p^{2}-46p+109}}+\frac{10p+20}{2\sqrt{5p^{2}-20p+25}}=0

\Rightarrow \frac{5p-23}{\sqrt{5p^{2}-46p+109}}=-\frac{5p-10}{\sqrt{5p^{2}-20p+25}}

Squaring both sides, we get:

\quad \frac{25p^{2}-230p+529}{5p^{2}-46p+109}=\frac{25p^{2}-100p+100}{5p^{2}-20p+25}

Dividing both sides by 5, we get:

\quad \frac{25p^{2}-230p+529}{25p^{2}-230p+545}=\frac{25p^{2}-100p+100}{25p^{2}-100p+125}

Using dividendo, we get:

\quad \frac{25p^{2}-230p+529}{25p^{2}-230p+545-25p^{2}+230p-529}=\frac{25p^{2}-100p+100}{25p^{2}-100p+125-25p^{2}+100p-100}

\Rightarrow \frac{25p^{2}-230p+529}{16}=\frac{25p^{2}-100p+100}{25}

\Rightarrow 625p^{2}-5750p+13225=400p^{2}-1600p+1600

\Rightarrow 225p^{2}-4150p+11625=0

\Rightarrow 9p^{2}-166p+465=0

\Rightarrow 9p^{2}-135p-31p+465=0

\Rightarrow 9p(p-15)-31(p-15)=0

\Rightarrow (p-15)(9p-31)=0

Either p-15=0 or, 9p-31=0

\implies p=15,\:\frac{31}{9}

  • At p=15,\:\frac{d^{2}(PQ+QR)}{dp^{2}}<0
  • At p=\frac{31}{9},\:\frac{d^{2}(PQ+QR)}{dp^{2}}>0

\therefore at p=\frac{31}{9}, (PQ+QR) attains the minimum value.

\therefore Min(PQ+QR)=7.071

Answer:

\quadThe least value of PQ + QR is 7.071.

Similar questions