Math, asked by physicist7587, 1 day ago

:A manufacturing company produces valves in various sizes and shapes.Each valve plate is
supposed to have a tensile strength of 5 lbs/mm.The company tests a random sample of 42 such
valve plates from a lot of 650 valve plates ,The sample mean tensile strength is 5.061 lbs/mm and
the population standard deviation is 0.280 lbs/mm.Use α=0.10 and test to determine whether the
lot of valve plates has an average tensile strength of 5lbs/mm. State the null and alternate
hypothesis clearly.:A manufacturing company produces valves in various sizes and shapes.Each valve plate is
supposed to have a tensile strength of 5 lbs/mm.The company tests a random sample of 42 such
valve plates from a lot of 650 valve plates ,The sample mean tensile strength is 5.061 lbs/mm and
the population standard deviation is 0.280 lbs/mm.Use α=0.10 and test to determine whether the
lot of valve plates has an average tensile strength of 5lbs/mm. State the null and alternate
hypothesis clearly.

Answers

Answered by arnavpradhan5946
0

Answer:

Given :-

\quad \leadsto \quad \lim \limits_{\sf x \to 0} \sf \dfrac{ {x}^{2} - \tan^2x }{ {x}^{4} }⇝

x→0

lim

x

4

x

2

−tan

2

x

To Find :-

Value of the limit

Solution :-

If you substitute directly , x = 0 . So , the limit will lead to indeterminate form \sf \dfrac{0}{0}

0

0

.So , consider given again ;

{\quad \leadsto \quad \displaystyle \lim_{\sf x \to 0} \sf \dfrac{ {x}^{2} - \tan^2x }{ {x}^{4} } }⇝

x→0

lim

x

4

x

2

−tan

2

x

{ : \implies \quad \sf \displaystyle \sf \lim_{x \to 0} \dfrac{(x)² - (\tan \: x )²}{x \times x³}}:⟹

x→0

lim

x×x³

(x)²−(tanx)²

{ : \implies \quad \sf \displaystyle \sf \lim_{x \to 0} \dfrac{(x + \tan \: x ) ( x - \tan \: x )}{x \times x³}}:⟹

x→0

lim

x×x³

(x+tanx)(x−tanx)

{ : \implies \quad \sf \displaystyle \sf \lim_{x \to 0} \bigg\{ \dfrac{x + \tan x}{x} \times \dfrac{x - \tan x}{x³} \bigg\} }:⟹

x→0

lim

{

x

x+tanx

×

x−tanx

}

{ : \implies \quad \sf \displaystyle \sf \lim_{x \to 0} \bigg\{ \bigg( \dfrac{x}{x} + \dfrac{\tan x}{x} \bigg) \times \bigg( \dfrac{x- \tan x}{x³} \bigg) \bigg\} }:⟹

x→0

lim

{(

x

x

+

x

tanx

)×(

x−tanx

)}

{ : \implies \quad \sf \displaystyle \sf \lim_{x \to 0} \bigg( \dfrac{x}{x} + \dfrac{\tan x}{x} \bigg) \times \displaystyle \sf \lim_{x \to 0} \bigg( \dfrac{x- \tan x}{x³} \bigg) }:⟹

x→0

lim

(

x

x

+

x

tanx

x→0

lim

(

x−tanx

)

Now , Use L'hopital rule in 2nd limit .

{ : \implies \quad \sf \displaystyle \sf \lim_{x \to 0} \bigg( 1 + \dfrac{\tan x}{x} \bigg) \times \displaystyle \sf \lim_{x \to 0} \bigg\{ \dfrac{(x-tan x)'}{(x³)'} \bigg\} }:⟹

x→0

lim

(1+

x

tanx

x→0

lim

{

(x³)

(x−tanx)

}

{ : \implies \quad \sf ( 1 + 1 ) \times \displaystyle \sf \lim_{x \to 0} \bigg( \dfrac{1 - \sec² x}{3x²} \bigg) }:⟹(1+1)×

x→0

lim

(

3x²

1−sec²x

)

{ : \implies \quad \sf 2 \times \displaystyle \sf \lim_{x \to 0} \bigg\{ \dfrac{- ( \sec² x - 1 ) }{3x²} \bigg\} }:⟹2×

x→0

lim

{

3x²

−(sec²x−1)

}

{ : \implies \quad \sf 2 \times \displaystyle \sf \lim_{x \to 0} \bigg( \dfrac{- \tan² x }{3x²} \bigg) }:⟹2×

x→0

lim

(

3x²

−tan²x

)

{ : \implies \quad \sf 2 \times - \dfrac{1}{3} \times \displaystyle \sf \lim_{x \to 0} \bigg( \dfrac{ \tan² x }{x²} \bigg) }:⟹2×−

3

1

×

x→0

lim

(

tan²x

)

{ : \implies \quad \sf 2 \times - \dfrac{1}{3} \times \displaystyle \sf \lim_{x \to 0} {\bigg\{ \bigg( \dfrac{ \tan \: x }{x} \bigg) \bigg\}}^{2} }:⟹2×−

3

1

×

x→0

lim

{(

x

tanx

)}

2

{ : \implies \quad \sf 2 \times - \dfrac{1}{3} \times \displaystyle \sf (1)²}:⟹2×−

3

1

×(1)²

{ : \implies \quad \bf - \dfrac{2}{3}}:⟹−

3

2

{\quad \qquad {\pmb {\bf { \orange { \therefore {\underline {\underline { \displaystyle \lim_{\bf x \to 0} \bf \dfrac{x² - \tan² (x)}{x⁴} = - \dfrac{2}{3} }}}}}}}}

x→0

lim

x⁴

x²−tan²(x)

=−

3

2

x→0

lim

x⁴

x²−tan²(x)

=−

3

2

Used Concepts :-

\displaystyle \bf \lim_{\bf x \to 0} \bf \dfrac{\tan x}{x} = 1

x→0

lim

x

tanx

=1

\bf ( a + b ) ( a - b ) = a² -b²(a+b)(a−b)=a²−b²

\bf \sec² \phi = \tan² \phi + 1sec²ϕ=tan²ϕ+1

If any limit is of the indeterminate form . Then L'hopital rule is applicable which can be applied by Differentiating both the numerator and denominator .

\bf \dfrac{d}{dx} ( \tan \: x ) = \sec² x

dx

d

(tanx)=sec²x

\bf \dfrac{d}{dx} ( x^{n}) = n \cdot x^{(n-1)}

dx

d

(x

n

)=n⋅x

(n−1)

\displaystyle \bf \lim_{x \to c} ( pq ) = \lim_{x \to c } p \times \lim_{x \to c } q

x→c

lim

(pq)=

x→c

lim

x→c

lim

q

Similar questions