A mass m of a liquid at temperature T₁ is mixed with an equal mass of same liquid temperature T₂. The system is thermally insulated. Show that the entropy change of
Universe is 2mc, log(( T₁+T₂) /2√(T₁T₂) )
Answers
Answer:
Given :
A cuboid is 6 cm long, 6 cm wide and 4 cm high .
Edge of cube is 6 cm .
To Find :
Greater volume .
Solution :
Firstly we'll find the Volume of Cuboid :
\longmapsto\tt{Length\:(l)=6\:cm}⟼Length(l)=6cm
\longmapsto\tt{Breadth\:(b)=6\:cm}⟼Breadth(b)=6cm
\longmapsto\tt{Height\:(h)=4\:cm}⟼Height(h)=4cm
Using Formula :
\longmapsto\tt\boxed{Volume\:of\:Cube=l\times{b}\times{h}}⟼
VolumeofCube=l×b×h
Putting Values :
\longmapsto\tt{6\times{6}\times{4}}⟼6×6×4
\longmapsto\tt{36\times{4}}⟼36×4
\longmapsto\tt\bf{144{cm}^{3}}⟼144cm
3
Now ,
For Volume of Cube :
Using Formula :
\longmapsto\tt\boxed{Volume\:of\:Cube={a}^{3}}⟼
VolumeofCube=a
3
Putting Values :
\longmapsto\tt{{6}^{3}}⟼6
3
\longmapsto\tt\bf{216{cm}^{3}}⟼216cm
3
So , The Volume of Cube is greater than the Volume of Cuboid .
Explanation:
Thus change in entropy is given by:
∆S = S2 – S1)
= mc (T1 + T2)/2∫ T1 (dT / T) – mc T2∫ T1 + T2)/2 (dT / T)
= mc ln (T1 + T2)/2 T1) –
mc ln (2 T2) / (T1 + T2)
= mc ln (T1 + T2)/2 T1) +
mc ln (T1 + T2) /2 T2)
= mc ln (T1 + T2) 2 / 4 T1 T2
= mc ln [(T1 + T2) / 2 (T1 T2) 1/2] 2
= 2 mc ln [(T1 + T2) / 2 (T1 T2) 1/2]
= 2 mc ln [(T1 + T2) / 2 ]/[ (T1 T2)1/2]
Hence, Resultant change of entropy of universe is:
2 mc ln [(T1 + T2) / 2]/[ (T1 T2)1/2]
The arithmetic mean (T1 + T2) / 2 is greater than the geometric mean (T1 T2) 1/2
Therefore, ln [(T1 + T2) / 2]/[ (T1 T2)1/2 ]
is always positive. Hence the entropy of the universe increases