Physics, asked by sanjaysasi013, 10 months ago

A mass of 5 kg is moving along a circular path of radius Im. If the mass moves with 300 revolutions per minute, its kinetic energy would be​

Answers

Answered by BrainIyCastIe
3

\large{\frak{Given}}\begin{cases}\sf{radius (R)= 1\:m}\\ \ \sf{mass(m)=5\:kg}\\ \ \sf{frequency(f)=300\:revmin^{-1}}\end{cases}

\large\underline{\frak{To\:Find:-}}

  • \large{\textsf{Kinetic Energy of the object}}

\large\underline{\frak{solution:-}}

\large{\textsf{ Angular velocity will be} }

\large\longrightarrow{\sf{2\pi f}}\\

\large\longrightarrow{\sf{300\times2\pi\:radmin^{-1}}}\\

\large\longrightarrow{\sf{300\times2\times3.14\:rad60^{-1}}}\\

\large\longrightarrow{\sf{\frac{\cancel{300}\times 2\times 3.14}{\cancel{60}}}}\\

\large\longrightarrow{\sf{10\pi\:rad}}\\

\large{\textsf{Relation between linear velocity }}\large{\textsf{and angular velocity is }}

\longrightarrow\sf{v= \omega R}

\large\longrightarrow{\sf{\frac{300\times2\pi}{60}\times1\:m}}\\

\large\longrightarrow{\sf{10\pi\:ms^{-1}}}\\

\large{\textsf{Now kinetic energy:-}}

→ 1/2mv²

→ 1/2×5×(10π)²

→ 100π²×5×1/2

250π² J

Similar questions