Physics, asked by AnanyaBaalveer, 16 days ago

A mass of 50 g of a certain metal at 150°C is immersed in 100 g of water at 11°C. The final temperature is 20°C. Calculate the specific heat capacity of the metal. Assume that the specific heat capacity of water is :-
\large\underline{\sf{ \rm \: 4.2 \: joule \:  {g}^{ - 1}  \:  {k}^{ - 1} }}

Answers

Answered by StarFighter
7

Answer:

Given :-

  • A mass of 50 g of a certain metal at 150°C is immersed in 100 g of water at 11°C.
  • The final temperature is 20°C.
  • The specific heat capacity of water is 4.2 J g-¹ k-¹.

To Find :-

  • What is the specific heat capacity of the metal.

Solution :-

First, we have to convert :

Initial temperature of metal :

\leadsto \sf Initial\: Temperature_{(Metal)} =\: 150^{\circ}C\\

\leadsto \sf Initial\: Temperature_{(Metal)} =\: 150^{\circ}C + 273\\

\leadsto \sf\bold{\blue{Initial\: Temperature_{(Metal)} =\: 423\: K}}\\

Final Temperature :

\leadsto \sf Final\: Temperature =\: 20^{\circ}C\\

\leadsto \sf Final\: Temperature =\: 20^{\circ}C + 273\\

\leadsto \sf\bold{\orange{Final\: Temperature =\: 293\: K}}\\

Initial Temperature of water :

\implies \sf Initial\: Temperature_{(Water)} =\: 11^{\circ}C\\

\implies \sf Initial\: Temperature_{(Water)} =\: 11^{\circ}C + 273\\

\implies \sf\bold{\green{Initial\:  Temperature_{(Water)} =\: 284\: K}}\\

\\

Now, we have to find the specific heat capacity of the metal :

Let,

\small \mapsto \bf Specific\: Heat\: Capacity_{(Metal)} =\: c_{(metal)}\\

Given :

◉ Mass of metal (\sf m_{[metal]}) = 50 g

◉ Mass of water (\sf m_{[water]}) = 100 g

◉ Specific Heat Capacity of water (\sf c_{[water]}) = 4.2 J g-¹ k-¹

◉ Initial Temperature of Metal (\sf T_{[initial]}) = 423 K

◉ Final Temperature (\sf T_{[Final]}) = 293 K

◉ Initial Temperature of Water (\sf T_{[Initial]}) = 284 K

\\

According to the question by using the formula we get,

\small \implies \bf Heat\: lost\: by\: Metal =\: Heat\: gained\: by\: Water\\

As we know that :

\small \bigstar \: \: \sf\boxed{\bold{\pink{m_{(metal)} c_{(metal)} \triangle T_{(metal)} =\: m_{(water)} c_{(water)} \triangle T_{(water)}}}}\: \: \: \bigstar\\

where,

  • \sf m_{(metal)} = Mass of metal
  • \sf c_{(metal)} = Specific heat capacity of metal
  • \sf \triangle T_{(metal)} = Change of temperature of metal
  • \sf m_{(water)} = Mass of water
  • \sf c_{(water)} = Specific heat capacity of water
  • \sf \triangle T_{(water)} = Change of temperature of water

\\

So, now by putting those values we get :

\small \implies \bf m_{(metal)} c_{(metal)} \triangle T_{(metal)} =\: m_{(water)} c_{(water)} \triangle T_{(water)}\\

\implies \sf 50 \times c_{(metal)} \times (423 - 293) =\: 100 \times 4.2 \times (293 - 284)\\

\implies \sf 50 \times c_{(metal)} \times 130 =\: 420 \times 9\\

\implies \sf 50 \times 130 \times c_{(metal)} =\: 3780\\

\implies \sf 6500 \times c_{(metal)} =\: 3780\\

\implies \sf c_{(metal)} =\: \dfrac{378\cancel{0}}{650\cancel{0}}\\

\implies \sf c_{(metal)} =\: \dfrac{378}{650}\\

\implies \sf\bold{\red{c_{(metal)} =\: 0.582\: J\: g^{- 1}\: k^{- 1}}}\\

\small \sf\bold{\purple{\underline{\therefore\: The\: specific\: heat\: capacity\: of\: metal\: is\: 0.582\: J\: g^{- 1}\: k^{- 1}\: .}}}\\

\\

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Answered by cutegirl3786
0

Answer:

Let subscript 1 denote solid (hot body) and subscript 2 denote water (cold body)

Initial temp. of solid T₁=150°C

Mass of solid m₁ = 50 g = 0.05 Kg

Initial temp. of water T₂=11°C

Mass of water m₂= 100 g = 0.1 Kg

Final temp of both T= 20°C

Specific heat capacity of water c₂=4.2 J/g°C

Let Specific heat capacity of solid be c₁

now,

heat gained by water = heat lost by solid

heat gained/lost = mcΔT

∴ m₁c₁ΔT₁ = m₂c₂ΔT₂

⇒ 0.05*c₁*(150-20) = 0.1*4.2*(20-11)

⇒ 0.05*130*c₁ = 0.1*4.2*9

⇒ c₁ = 0.5815 J/g°C

Answer: Specific heat capacity of the solid is 0.5815 J/g°C

Similar questions