A mass of m kg is suspended by a weightless string. the horizontal force that is required to displace it until the string makes an angle of 45° with the initial vertical direction
Answers
Answered by
36
The work done by the force will be equal to the potentail energy gained by the mass.
Let L be the length of the string ,
F.d= MgL (1 -cos45 )
The horizontal displacement of the mass is d= L sin 45
F L sin45 = Mg L(1 - 45)
F = Mg (sq. root 2 - 1)
USE CONSERVATION OF ENERGY
Let x be the force required
T Sin 45=M kg …....1
T Cos45=x ….......2
Divide equation 1 and 2,
1=M/x
x=M
Let L be the length of the string ,
F.d= MgL (1 -cos45 )
The horizontal displacement of the mass is d= L sin 45
F L sin45 = Mg L(1 - 45)
F = Mg (sq. root 2 - 1)
USE CONSERVATION OF ENERGY
Let x be the force required
T Sin 45=M kg …....1
T Cos45=x ….......2
Divide equation 1 and 2,
1=M/x
x=M
Answered by
15
Work done by trension -Work done by force =Work done by gravitational force
0+F×AB=Mg×AC0+F×AB=Mg×AC
F=Mg(ACAB)F=Mg(ACAB)
AB=lsin45AB=lsin45
=l2–√=l2
AC=OC−OAAC=OC−OA
=l−lcos45=l−lcos45
=Mg(1−1212√)=Mg(1−1212)
AC=OC−OAAC=OC−OA
=l−lcos45=l−lcos45 (l-length of string)
Therefore F=Mg(2–√−1)
0+F×AB=Mg×AC0+F×AB=Mg×AC
F=Mg(ACAB)F=Mg(ACAB)
AB=lsin45AB=lsin45
=l2–√=l2
AC=OC−OAAC=OC−OA
=l−lcos45=l−lcos45
=Mg(1−1212√)=Mg(1−1212)
AC=OC−OAAC=OC−OA
=l−lcos45=l−lcos45 (l-length of string)
Therefore F=Mg(2–√−1)
Attachments:
Similar questions