Physics, asked by Aanshuthakur457, 9 months ago

A mass on a spring oscillates along a vertical line, taking 12s to complete 10 oscillations.

Calculate the (a)time period, and (b) the angular frequency.

Answers

Answered by Anonymous
9

\color{darkblue}\underline{\underline{\sf Given-}}

  • A mass on a spring oscillates along a vertical line taking 12s to complete 10 oscillation.

\color{darkblue}\underline{\underline{\sf To \: Find-}}

  • Time Period (T)
  • Angular Frequency {\sf (\omega)}

━━━━━━━━━━━━━━━━━━━━━━━━━

\color{darkblue}\underline{\underline{\sf Formula \: Used-}}

\color{violet}\bullet\underline{\boxed{\sf Time\: Period (T)=\dfrac{Total\:Time}{No.\:of\: oscillating}}}

\color{violet}\bullet\underline{\boxed{\sf Angular\: Frequency (\omega)= \dfrac{2π}{T}}}

━━━━━━━━━━━━━━━━━━━━━━━━━━

Time Period

\implies{\sf T =\dfrac{12}{10}}

\color{red}\implies{\sf T=1.2\:s}

Angular Frequency

\large\implies{\sf \omega=\dfrac{2π}{T}}

\implies{\sf \omega =\dfrac{2×3.12}{1.2} }

\implies{\sf \omega =\dfrac{6.28}{1.2} }

\color{red}\implies{\sf Angular \: Frequency (\omega)=5.23\:rad/s }

\color{darkblue}\underline{\underline{\sf Answer-}}

Angular Frequency \color{red}{\sf 5.23\:rad/s}

Time period \color{red}{\sf 1.2\:sec}

Answered by Anonymous
11

Solution :

Given:

✏ No. of oscillations = 10

✏ Time interval = 12s

To Find:

  • Time period
  • Angular frequency

Concept:

✏ Time period is defined as time requires to complete one oscillation.

Formula:

  • Time period

 \star \:  \underline{ \boxed{ \bold{ \sf{ \pink{Time \: period =  \frac{Total \: time}{No. \: of \: oscillations}}}}}} \:  \star

  • Angular frequency

 \star \:  \underline{ \boxed{ \bold{ \sf{ \large{ \purple{ \omega =  \frac{2\pi}{T}}}}}}} \:  \star

Calculation:

  • Time period

 \implies \sf \: T =  \dfrac{12}{10}  \\  \\  \implies  \:  \boxed{ \bold{  \red{\sf{T = 1.2 \: s}}}}

  • Angular frequency

 \implies \sf \:  \omega =  \dfrac{2\pi }{1.2}  \\  \\  \implies \sf \:  \omega =  \frac{6.28}{1.2}  \\  \\  \implies \:  \boxed{ \bold{ \sf{ \green{ \omega = 5.23 \: rad {(s)}^{ - 1}}}}}

Similar questions