Physics, asked by gkGeetakumari4459, 1 year ago

A material has a youngs modulus of 1.25 105 n/mm2 and a poissons ratio of 0.25. The bulk modulus of the material will be

Answers

Answered by nirman95
3

Given:

A material has a youngs modulus of 1.25×10⁵ N/m² and a poissons ratio of 0.25.

To find:

Value of Bulk Modulus.

Calculation:

This type of questions always appear in competitive exams and hence kindly remember the following equation relating the Young's Modulus, Poisson's ratio and Bulk Modulus.

 \boxed{ \bold{K =  \dfrac{ \gamma }{3(1 - 2 \sigma)} }}

Here "K" is Bulk Modulus , \gamma is Young's Modulus , \sigma is Poisson's ratio.

Putting the available values:

\sf{ =  > K =  \dfrac{ 1.25 \times  {10}^{ - 5}  }{3 \bigg \{1 - 2 (0.25) \bigg \}} }

\sf{ =  > K =  \dfrac{ 1.25 \times  {10}^{ - 5}  }{3 \bigg \{1 - 0.5 \bigg \}} }

\sf{ =  > K =  \dfrac{ 1.25 \times  {10}^{ - 5}  }{3 \bigg \{0.5 \bigg \}} }

\sf{ =  > K =  \dfrac{ 1.25 \times 2 \times  {10}^{ - 5}  }{3 } }

\sf{ =  > K =  \dfrac{ 2.5 \times  {10}^{ - 5}  }{3 } }

\sf{ =  > K =  0.83 \times  {10}^{ - 5} \:Pa  }

So, Bulk Modulus is 0.83 × 10^(-5) Pascal.

Similar questions