Math, asked by NITESH761, 2 months ago

A math question most computers can't solve but you can.
 {( {x}^{2} - 7x + 11) }^{ {x}^{2} - 13x + 42 }  = 1
please Don't scam .​

Answers

Answered by TrustedAnswerer19
13

Answer:

Firstly,

we know that,

anything to the power zero (0) = 1 , that is

 \sf {a}^{0}  = 1 \:  \:  \: where \:  \: a \neq 0

That's why, we can also write that,

 \sf \: 1 =  {( {x}^{2} - 7x + 11 })^{0}

and

 \sf \: \:if \:  \:   {a}^{m}  =  {a}^{n}   \:  \:  \: \: then \:  \: m = n

Now,

Given,

 \sf \:  {( {x}^{2} - 7x + 11 })^{ { {x}^{2}  - 13x + 42}^{} }  = 1 \\   \sf \implies \: {( {x}^{2} - 7x + 11 })^{ { {x}^{2}  - 13x + 42}^{} }  =  {( {x}^{2}  - 7x + 11)}^{0}  \\   \sf \implies \:  {x}^{2}  - 13x + 42 = 0 \\   \sf \implies \:  {x}^{2}  - 7x - 6x + 42 = 0 \\   \sf \implies \: x(x - 7) - 6(x - 7) = 0 \\   \sf \implies \: (x - 7)(x - 6) = 0 \\  \therefore \sf \: x = 7 \: \:  \:  or \:  \:  \: 6 \\  \\

Answered by ManishShah98
3

\color{darkred}question = {( {x}^{2} - 7x + 11) }^{ {x}^{2} - 13x + 42 } = 1 \\   \\ \color{darkkhaki}solution \\ \color{darkgreen}formula =  {a}^{0}  = 1. \\  \\ \color{green}{( {x}^{2} - 7x + 11) }^{ {x}^{2} - 13x + 42 } = 1 \\  \ \\ \small\color{green} {( {x}^{2} - 7x + 11) }^{ {x}^{2} - 13x + 42 } =( {x}^{2} - 7x + 11) {}^{0} \\  \\  \color{green}  {x}^{2}  - 13x + 42 = 0 \\  \\ \color{green} {x}^{2}  - (7 + 6)x + 42 = 0 \\  \\ \color{green} {x}^{2}  - 7x - 6x + 42 = 0 \\  \\ \color{green}x(x - 7) - 6(x - 7) = 0 \\  \\ \color{green}(x - 7)(x - 6) = 0 \\  \\ \color{red} ||  \:  \: \color{blue}x  - 7 = 0 \\ \color{blue}x = 7\color{red} \:  \:  ||  \\  \\\color{red} ||  \color{green}x - 6 = 0 \\ \color{green}x = 6 \:  \: \color{red} ||  \\  \\ \color{greenyellow}zerose \: of \: the \: polynomial   \\\color{darkgreen} x = 7 \:  , \: x = 6 \\  \\\color{orange} hope \: its \: help \: you ❤\\  \\ \small \color{red}  its \: ᭄亗 乄 MꫝղᎥនh 乄 亗✯❤࿐

Similar questions