Math, asked by oxopixdocstop8292719, 3 months ago

A medicine capsule in a shape of a cylinder with two hemispheres stuck to each of its end. a medicine capsule is in the shape of a cylinder with two hemispheres stuck to each of its ends. the length of the entire capsule is 14mm and the diameter of the capsule is 5mm find its surface area.​

Answers

Answered by Fattzzyyy
1

Step-by-step explanation:

here you go!! umm do mark as brainliest please

Attachments:
Answered by Anonymous
1

REF.Image

REF.Image TSA = 2(SA of hemisphere)+CSA of cylinder

REF.Image TSA = 2(SA of hemisphere)+CSA of cylinder=2(2π(

REF.Image TSA = 2(SA of hemisphere)+CSA of cylinder=2(2π( 2

REF.Image TSA = 2(SA of hemisphere)+CSA of cylinder=2(2π( 25

REF.Image TSA = 2(SA of hemisphere)+CSA of cylinder=2(2π( 25

REF.Image TSA = 2(SA of hemisphere)+CSA of cylinder=2(2π( 25 )

REF.Image TSA = 2(SA of hemisphere)+CSA of cylinder=2(2π( 25 ) 2

REF.Image TSA = 2(SA of hemisphere)+CSA of cylinder=2(2π( 25 ) 2 )+2π(

REF.Image TSA = 2(SA of hemisphere)+CSA of cylinder=2(2π( 25 ) 2 )+2π( 2

REF.Image TSA = 2(SA of hemisphere)+CSA of cylinder=2(2π( 25 ) 2 )+2π( 25

REF.Image TSA = 2(SA of hemisphere)+CSA of cylinder=2(2π( 25 ) 2 )+2π( 25

REF.Image TSA = 2(SA of hemisphere)+CSA of cylinder=2(2π( 25 ) 2 )+2π( 25 )(9)

REF.Image TSA = 2(SA of hemisphere)+CSA of cylinder=2(2π( 25 ) 2 )+2π( 25 )(9)=4π

REF.Image TSA = 2(SA of hemisphere)+CSA of cylinder=2(2π( 25 ) 2 )+2π( 25 )(9)=4π 4

REF.Image TSA = 2(SA of hemisphere)+CSA of cylinder=2(2π( 25 ) 2 )+2π( 25 )(9)=4π 425

REF.Image TSA = 2(SA of hemisphere)+CSA of cylinder=2(2π( 25 ) 2 )+2π( 25 )(9)=4π 425

REF.Image TSA = 2(SA of hemisphere)+CSA of cylinder=2(2π( 25 ) 2 )+2π( 25 )(9)=4π 425 +45π

REF.Image TSA = 2(SA of hemisphere)+CSA of cylinder=2(2π( 25 ) 2 )+2π( 25 )(9)=4π 425 +45π=25π+45π

REF.Image TSA = 2(SA of hemisphere)+CSA of cylinder=2(2π( 25 ) 2 )+2π( 25 )(9)=4π 425 +45π=25π+45π=70πcm

REF.Image TSA = 2(SA of hemisphere)+CSA of cylinder=2(2π( 25 ) 2 )+2π( 25 )(9)=4π 425 +45π=25π+45π=70πcm 2

REF.Image TSA = 2(SA of hemisphere)+CSA of cylinder=2(2π( 25 ) 2 )+2π( 25 )(9)=4π 425 +45π=25π+45π=70πcm 2

REF.Image TSA = 2(SA of hemisphere)+CSA of cylinder=2(2π( 25 ) 2 )+2π( 25 )(9)=4π 425 +45π=25π+45π=70πcm 2 =

REF.Image TSA = 2(SA of hemisphere)+CSA of cylinder=2(2π( 25 ) 2 )+2π( 25 )(9)=4π 425 +45π=25π+45π=70πcm 2 = 7

REF.Image TSA = 2(SA of hemisphere)+CSA of cylinder=2(2π( 25 ) 2 )+2π( 25 )(9)=4π 425 +45π=25π+45π=70πcm 2 = 722

REF.Image TSA = 2(SA of hemisphere)+CSA of cylinder=2(2π( 25 ) 2 )+2π( 25 )(9)=4π 425 +45π=25π+45π=70πcm 2 = 722

REF.Image TSA = 2(SA of hemisphere)+CSA of cylinder=2(2π( 25 ) 2 )+2π( 25 )(9)=4π 425 +45π=25π+45π=70πcm 2 = 722 ×70

REF.Image TSA = 2(SA of hemisphere)+CSA of cylinder=2(2π( 25 ) 2 )+2π( 25 )(9)=4π 425 +45π=25π+45π=70πcm 2 = 722 ×70=220cm

REF.Image TSA = 2(SA of hemisphere)+CSA of cylinder=2(2π( 25 ) 2 )+2π( 25 )(9)=4π 425 +45π=25π+45π=70πcm 2 = 722 ×70=220cm 2

Hope its helpful.( ꈍᴗꈍ)

Attachments:
Similar questions