A medicine capsule in a shape of a cylinder with two hemispheres stuck to each of its end. a medicine capsule is in the shape of a cylinder with two hemispheres stuck to each of its ends. the length of the entire capsule is 14mm and the diameter of the capsule is 5mm find its surface area.
Answers
Step-by-step explanation:
here you go!! umm do mark as brainliest please
REF.Image
REF.Image TSA = 2(SA of hemisphere)+CSA of cylinder
REF.Image TSA = 2(SA of hemisphere)+CSA of cylinder=2(2π(
REF.Image TSA = 2(SA of hemisphere)+CSA of cylinder=2(2π( 2
REF.Image TSA = 2(SA of hemisphere)+CSA of cylinder=2(2π( 25
REF.Image TSA = 2(SA of hemisphere)+CSA of cylinder=2(2π( 25
REF.Image TSA = 2(SA of hemisphere)+CSA of cylinder=2(2π( 25 )
REF.Image TSA = 2(SA of hemisphere)+CSA of cylinder=2(2π( 25 ) 2
REF.Image TSA = 2(SA of hemisphere)+CSA of cylinder=2(2π( 25 ) 2 )+2π(
REF.Image TSA = 2(SA of hemisphere)+CSA of cylinder=2(2π( 25 ) 2 )+2π( 2
REF.Image TSA = 2(SA of hemisphere)+CSA of cylinder=2(2π( 25 ) 2 )+2π( 25
REF.Image TSA = 2(SA of hemisphere)+CSA of cylinder=2(2π( 25 ) 2 )+2π( 25
REF.Image TSA = 2(SA of hemisphere)+CSA of cylinder=2(2π( 25 ) 2 )+2π( 25 )(9)
REF.Image TSA = 2(SA of hemisphere)+CSA of cylinder=2(2π( 25 ) 2 )+2π( 25 )(9)=4π
REF.Image TSA = 2(SA of hemisphere)+CSA of cylinder=2(2π( 25 ) 2 )+2π( 25 )(9)=4π 4
REF.Image TSA = 2(SA of hemisphere)+CSA of cylinder=2(2π( 25 ) 2 )+2π( 25 )(9)=4π 425
REF.Image TSA = 2(SA of hemisphere)+CSA of cylinder=2(2π( 25 ) 2 )+2π( 25 )(9)=4π 425
REF.Image TSA = 2(SA of hemisphere)+CSA of cylinder=2(2π( 25 ) 2 )+2π( 25 )(9)=4π 425 +45π
REF.Image TSA = 2(SA of hemisphere)+CSA of cylinder=2(2π( 25 ) 2 )+2π( 25 )(9)=4π 425 +45π=25π+45π
REF.Image TSA = 2(SA of hemisphere)+CSA of cylinder=2(2π( 25 ) 2 )+2π( 25 )(9)=4π 425 +45π=25π+45π=70πcm
REF.Image TSA = 2(SA of hemisphere)+CSA of cylinder=2(2π( 25 ) 2 )+2π( 25 )(9)=4π 425 +45π=25π+45π=70πcm 2
REF.Image TSA = 2(SA of hemisphere)+CSA of cylinder=2(2π( 25 ) 2 )+2π( 25 )(9)=4π 425 +45π=25π+45π=70πcm 2
REF.Image TSA = 2(SA of hemisphere)+CSA of cylinder=2(2π( 25 ) 2 )+2π( 25 )(9)=4π 425 +45π=25π+45π=70πcm 2 =
REF.Image TSA = 2(SA of hemisphere)+CSA of cylinder=2(2π( 25 ) 2 )+2π( 25 )(9)=4π 425 +45π=25π+45π=70πcm 2 = 7
REF.Image TSA = 2(SA of hemisphere)+CSA of cylinder=2(2π( 25 ) 2 )+2π( 25 )(9)=4π 425 +45π=25π+45π=70πcm 2 = 722
REF.Image TSA = 2(SA of hemisphere)+CSA of cylinder=2(2π( 25 ) 2 )+2π( 25 )(9)=4π 425 +45π=25π+45π=70πcm 2 = 722
REF.Image TSA = 2(SA of hemisphere)+CSA of cylinder=2(2π( 25 ) 2 )+2π( 25 )(9)=4π 425 +45π=25π+45π=70πcm 2 = 722 ×70
REF.Image TSA = 2(SA of hemisphere)+CSA of cylinder=2(2π( 25 ) 2 )+2π( 25 )(9)=4π 425 +45π=25π+45π=70πcm 2 = 722 ×70=220cm
REF.Image TSA = 2(SA of hemisphere)+CSA of cylinder=2(2π( 25 ) 2 )+2π( 25 )(9)=4π 425 +45π=25π+45π=70πcm 2 = 722 ×70=220cm 2
Hope its helpful.( ꈍᴗꈍ)