Math, asked by oxopixdocstop8292719, 3 months ago

A medicine capsule in a shape of a cylinder with two hemispheres stuck to each of its end. a medicine capsule is in the shape of a cylinder with two hemispheres stuck to each of its ends. the length of the entire capsule is 14mm and the diameter of the capsule is 5mm find its surface area.​

Answers

Answered by Anonymous
1

Answer:

REF.Image

REF.Image TSA = 2(SA of hemisphere)+CSA of cylinder

REF.Image TSA = 2(SA of hemisphere)+CSA of cylinder=2(2π(

REF.Image TSA = 2(SA of hemisphere)+CSA of cylinder=2(2π( 2

REF.Image TSA = 2(SA of hemisphere)+CSA of cylinder=2(2π( 25

REF.Image TSA = 2(SA of hemisphere)+CSA of cylinder=2(2π( 25

REF.Image TSA = 2(SA of hemisphere)+CSA of cylinder=2(2π( 25 )

REF.Image TSA = 2(SA of hemisphere)+CSA of cylinder=2(2π( 25 ) 2

REF.Image TSA = 2(SA of hemisphere)+CSA of cylinder=2(2π( 25 ) 2 )+2π(

REF.Image TSA = 2(SA of hemisphere)+CSA of cylinder=2(2π( 25 ) 2 )+2π( 2

REF.Image TSA = 2(SA of hemisphere)+CSA of cylinder=2(2π( 25 ) 2 )+2π( 25

REF.Image TSA = 2(SA of hemisphere)+CSA of cylinder=2(2π( 25 ) 2 )+2π( 25

REF.Image TSA = 2(SA of hemisphere)+CSA of cylinder=2(2π( 25 ) 2 )+2π( 25 )(9)

REF.Image TSA = 2(SA of hemisphere)+CSA of cylinder=2(2π( 25 ) 2 )+2π( 25 )(9)=4π

REF.Image TSA = 2(SA of hemisphere)+CSA of cylinder=2(2π( 25 ) 2 )+2π( 25 )(9)=4π 4

REF.Image TSA = 2(SA of hemisphere)+CSA of cylinder=2(2π( 25 ) 2 )+2π( 25 )(9)=4π 425

REF.Image TSA = 2(SA of hemisphere)+CSA of cylinder=2(2π( 25 ) 2 )+2π( 25 )(9)=4π 425

REF.Image TSA = 2(SA of hemisphere)+CSA of cylinder=2(2π( 25 ) 2 )+2π( 25 )(9)=4π 425 +45π

REF.Image TSA = 2(SA of hemisphere)+CSA of cylinder=2(2π( 25 ) 2 )+2π( 25 )(9)=4π 425 +45π=25π+45π

REF.Image TSA = 2(SA of hemisphere)+CSA of cylinder=2(2π( 25 ) 2 )+2π( 25 )(9)=4π 425 +45π=25π+45π=70πcm

REF.Image TSA = 2(SA of hemisphere)+CSA of cylinder=2(2π( 25 ) 2 )+2π( 25 )(9)=4π 425 +45π=25π+45π=70πcm 2

REF.Image TSA = 2(SA of hemisphere)+CSA of cylinder=2(2π( 25 ) 2 )+2π( 25 )(9)=4π 425 +45π=25π+45π=70πcm 2

REF.Image TSA = 2(SA of hemisphere)+CSA of cylinder=2(2π( 25 ) 2 )+2π( 25 )(9)=4π 425 +45π=25π+45π=70πcm 2 =

REF.Image TSA = 2(SA of hemisphere)+CSA of cylinder=2(2π( 25 ) 2 )+2π( 25 )(9)=4π 425 +45π=25π+45π=70πcm 2 = 7

REF.Image TSA = 2(SA of hemisphere)+CSA of cylinder=2(2π( 25 ) 2 )+2π( 25 )(9)=4π 425 +45π=25π+45π=70πcm 2 = 722

REF.Image TSA = 2(SA of hemisphere)+CSA of cylinder=2(2π( 25 ) 2 )+2π( 25 )(9)=4π 425 +45π=25π+45π=70πcm 2 = 722

REF.Image TSA = 2(SA of hemisphere)+CSA of cylinder=2(2π( 25 ) 2 )+2π( 25 )(9)=4π 425 +45π=25π+45π=70πcm 2 = 722 ×70

REF.Image TSA = 2(SA of hemisphere)+CSA of cylinder=2(2π( 25 ) 2 )+2π( 25 )(9)=4π 425 +45π=25π+45π=70πcm 2 = 722 ×70=220cm

REF.Image TSA = 2(SA of hemisphere)+CSA of cylinder=2(2π( 25 ) 2 )+2π( 25 )(9)=4π 425 +45π=25π+45π=70πcm 2 = 722 ×70=220cm 2

Attachments:
Answered by ItzMarvels
42

Question

  • A medicine capsule in a shape of a cylinder with two hemispheres stuck to each of its end. a medicine capsule is in the shape of a cylinder with two hemispheres stuck to each of its ends. the length of the entire capsule is 14mm and the diameter of the capsule is 5mm find its surface area.

Answer

Given data

  • diameter = 5mm
  • length = 14mm
  • pie = 3.14 = 22/7

To find

  • Surface area =?

Solution

By using this formula,

  \large  \red{ \boxed{2\pi rh + 2\pi  {r}^{2}  + 2\pi  {r}^{2} }}

 \implies \large {2\pi r(h + r + r)} \\  \\   \large \sf{ \underline{put \: values \: in \: the \: formula}}\\   \\ \implies \large{2 \times  \frac{22}{7} \times 2.5(9 + 5) } \\  \\ \implies \large{2 \times  \frac{22}{ \cancel{7}}  \times 2.5 \times  \cancel{14}^{2} } \\ \\  \implies \red {\large{220 \:  \sf{sqmm}}}

Similar questions