Math, asked by vanishkakumari, 10 months ago

A metal cube of edge 12 cm is melted and formed into three smaller cubes. If the edges
the two smaller cubes are 6 cm and 8 cm, find the edge of the third smaller cube
11 no 100m 50 mand 18m How many personscans​

Answers

Answered by Anonymous
7

Given  \: : Edge \: \: of  \: \: melted \: \:  cube \:  =  \bold{12cm }\:  \\   and \:  \: the \: edges \:  \: of \: smaller \:  cubes  \: are \:  = \bold{ 6cm  \: \: and \:  \: 8cm \: }

To \: find \:  : \: The \:  \: edge \:  \: of \:  {3}^{rd} cube

 \large \underline{ \underline{Solution}}

Let the edge of third cube be x

  \because \: vol \: of \: bigger \: cube \:  =  \: sum \: of \: vol \: of \: smaller \: cubes

 \implies \:  {12}^{3}  =  {x}^{3}  +  {6}^{3}  +  {8}^{3}  \\  \\  \implies \:  \: 1728 \:  =  {x}^{3}  + 216 + 512   \\  \\   \implies \:  {x}^{3} = 1728 - 216  - 512 \:  \\  \\  \implies \:  {x}^{3}  = 1000 \\  \\  \implies \: x =   \sqrt[3]{1000}

  \implies \:  \large{ \bold{ \underline{ \underline{ x \:  =  \: 10}}}}

Thus, the edge of third cube is 10cm

Answered by Anonymous
3

Question :-

→ A metal cube of edge 12 cm is melted and formed into three smaller cubes. If the edges the two smaller cubes are 6 cm and 8 cm, find the edge of the third smaller cube ?

Solution :-

→ 10 cm

Given :-

 \tt{→ Edge  \: of  \: a \:  bigger  \: cube \:  ( R ) = 12 m } \:

 \tt{→ Edge \:  of \:  a \:  first  \: smaller \:  cube  \: ( {r}^{2} ) = 8 m }

 \tt{→ Edge  \: of  \: a  \: second  \: smaller \:  cube  \: ( {r}^{2} ) = 6m }

 \tt{→ Volume \:  of \:  a \:  cube =  {side}^{3}}

 \tt{→ Volume \:  of \:  a \:  bigger  \: cube ( V ) = {sides}^{3}}

 \tt{=  {12}^{3} =  {1728}^{3} }

 \tt{→ It  \: is \:  melted  \: into  \: three \:  other \:  cubes \:  , so \:  the}

 \tt{volume  \: of \:  the \:  smaller  \: cubes  \: remains  \: same \:  as}

 \tt{the \:  volume \:  of \:  bigger  \: cube . }

 \tt{→ Volume \:  of  \: the \:  first  \: smaller  \: cubes ( V1 )  }

 \tt{→  {8}^{3} =  {512m}^{3}}

 \tt{→ Volume  \: of  \: second  \: smaller  \: cube ( V2 ) =  {6}^{3} = {216m}^{3} }

→ Total volume ( V ) = volume of first smaller cube ( V1 ) + volume of second smaller cube ( V2 ) + + volume of third smaller cube ( V3 )

→ V = V1 + V2 + V3

→ 1728 = 512 + 216 + V3

→ 1728 = 728 + V3

→ 1728 - 728 = V3

→ 1000 = V3

 \tt{→ Volume  \: of  \: third \:  cube =  {1000m}^{3}}

 \tt{→  {Edge}^{3} = 1000 }

 \tt{→ Edge  =  \sqrt[3]{1000}}

 \tt{→ Edge =  \sqrt[3]{10 \times 10 \times 10}}

 \boxed{ \tt{→ Edge = 10 m }}

→Hence , the edge of the third cube is 10m

Attachments:
Similar questions