Math, asked by nephophile2006, 4 days ago

A metal cube of edge 15cm is melted and recast into a square pyramid of base edge 25cm.what is its height?​

Answers

Answered by Anonymous
30

 \star \; {\underline{\boxed{\pmb{\blue{\frak{ \; Given \; :- }}}}}}

  • Edge of cube = 15 cm
  • Edge of base of Square Pyramid = 25 cm

 \\ \\

 \star \; {\underline{\boxed{\pmb{\orange{\frak{ \; To \; Find \; :- }}}}}}

  • Height of Pyramid = ?

 \\ \\

 \star \; {\underline{\boxed{\pmb{\red{\frak{ \; Solution \; :- }}}}}}

 \bigstar Formula Used :

  •  {\underline{\boxed{\pmb{\sf{ Volume{\small_{(Cube)}} = {Edge}^{3} }}}}}

  •  {\underline{\boxed{\pmb{\sf{ Volume{\small_{(Square \; Pyramid)}} = \dfrac{1}{3} \times {Edge}^{2} \times Height }}}}}

 \\ \qquad{\rule{150pt}{2pt}}

 \bigstar Calculating the Volume of Cube :

 {\implies{\qquad{\sf{ Volume = {Edge}^{3} }}}} \\ \\ \\ \ {\implies{\qquad{\sf{ Volume = {15}^{3} }}}} \\ \\ \\ \ {\implies{\qquad{\sf{ Volume = 15 \times 15 \times 15 }}}} \\ \\ \\ \ {\qquad \; \; {\therefore \; {\underline{\boxed{\pmb{\purple{\sf{ Volume = 3375 \; {cm}^{3} }}}}}}}}

 \\ \qquad{\rule{150pt}{2pt}}

 \bigstar Calculating the Height of Pyramid :

 {\dashrightarrow{\qquad{\sf{ Volume = \dfrac{1}{3} \times {Edge}^{2} \times Height }}}} \\ \\ \\ \ {\dashrightarrow{\qquad{\sf{ 3375 = \dfrac{1}{3} \times {25}^{2} \times Height }}}} \\ \\ \\ \ {\dashrightarrow{\qquad{\sf{ 3375 \times 3 = 1 \times {25}^{2} \times Height }}}} \\ \\ \\ \ {\dashrightarrow{\qquad{\sf{ 10125 = {25}^{2} \times Height }}}} \\ \\ \\ \ {\dashrightarrow{\qquad{\sf{ 10125 = 625 \times Height }}}} \\ \\ \\ \ {\dashrightarrow{\qquad{\sf{ \dfrac{10125}{625} = Height }}}} \\ \\ \\ \ {\dashrightarrow{\qquad{\sf{ \cancel\dfrac{10125}{625} = Height }}}} \\ \\ \\ \ {\qquad \; \; {\therefore \; {\underline{\boxed{\pmb{\pink{\sf{ Height = 16.2 \; cm }}}}}}}}

 \\ \qquad{\rule{150pt}{2pt}}

 \bigstar Therefore :

❛❛ Height of the Pyramid formed is 16.2 cm . ❜❜

 \\ {\underline{\rule{300pt}{9pt}}}

Similar questions