Chemistry, asked by StrongGirl, 9 months ago

A metal having work function = 4.41 x 10 ^-19 J is subjected to a light having a wavelength 300 nm, then the maximum kinetic energy of the emitted. Photoelectron is .........x 10^-21 J.

Answers

Answered by SumitmuneshwarEXPERT
13

Answer:

  • 2.19×10^-19.....

LIKE PLEASE

MARK AS BRAINLIEST ❤❤❤

PRACTICE MORE

Attachments:
Answered by BrainlyTornado
20

ANSWER:

  • The maximum kinetic energy of the emitted Photoelectron = 221.6 × 10⁻²¹ J.

GIVEN:

  • A metal having work function = 4.41 x 10⁻¹⁹ J

  • It is subjected to a light having a wavelength 300 nm,

TO FIND:

  • The maximum kinetic energy of the emitted Photoelectron.

EXPLANATION:

 \sf W_o= 4.41  \times  10 ^{-19}\ J

\sf Wavelength(\lambda) = 300 \ nm

\boxed{ \bold{ \large{ \gray{ K.E_{max} =E -W_0}}}}

\boxed{ \bold{ \large{ \gray{E =\dfrac{hc}{\lambda}}}}}

 \sf h = 6.626 \times 10^{-34} \ Js

 \sf c = 3 \times 10^8\ ms^{-1}

\sf \lambda= 300 \ nm = 300 \times  {10}^{ - 9}  \ m

 \sf E =\dfrac{6.626 \times 10^{-34} \times  3 \times 10^8}{300 \times  {10}^{ - 9} }

 \sf E =\dfrac{6.626 \times 10^{-34} \times 10^8}{100 \times  {10}^{ - 9} }

 \sf E =\dfrac{6.626 \times 10^{ - 26}}{{10}^{ - 7} }

 \sf E =6.626 \times 10^{ - 26 + 7}

 \sf E =6.626 \times 10^{ -19} \ J

 \sf E -W_0 = 6.626 \times 10^{ -19}  - 4.41  \times  10 ^{-19}

 \sf E -W_0 =( 6.626 - 4.41)\times  10 ^{-19}

 \sf E -W_0 =2.216  \times 10 ^{-19}\ J

 \sf E -W_0 =221.6  \times 10 ^{-21}\ J

 \sf K.E_{max} =221.6  \times 10 ^{-21}\ J

HENCE THE MAXIMUM KINETIC ENERGY = 221.6 × 10⁻²¹ J.

OTHER FORMULAE FOR MAXIMUM KINETIC ENERGY:

\sf K.E_{max}= \dfrac{1}{2}mv^2_{max}

\sf K.E_{max}=h(\nu-\nu_o)

\sf K.E_{max}= h\left(\dfrac{c}{\lambda}-\dfrac{c}{\lambda_o}\right)


Steph0303: Great Answer :) Well Presented.
mddilshad11ab: perfect explaination ✔️
Similar questions