Chemistry, asked by Anonymous, 4 months ago

. A metal M of atomic weight 54.9 has a density of
7.42 g cm ^-3. Calculate the volume occupied and the radius
of the atom of this metal assuming it to be sphere.​

Answers

Answered by Anonymous
0

Answer:

Explanation:

a container used for transportation has capacity 34.5metercube the length and bradth of conainer are 5m and 2.3m find the height of container

Answered by IdyllicAurora
59

\\\;\underbrace{\underline{\sf{Understanding\;the\;Question\;:-}}}

We are given the density and mass of the metal. Using this, we can calculate the volume occupied by the metal. Also by Avogadro's Constant we can calculate the volume of each atom. And then using the formula of volume of sphere, we can find the radius of atom of metal.

Let's do it !!

____________________________________________

Formula Used :-

\\\;\boxed{\sf{Density\;=\;\bf{\dfrac{Mass}{Volume}}}}

\\\;\boxed{\sf{Volume\;of\;Sphere\;=\bf{\dfrac{4}{3}\:\pi r^{3}}}}

____________________________________________

Solution :-

Given,

» Density of metal = 7.42 g/cm³

» Mass of Metal = 54.9 g

» No. of atoms in metal = 6.022 × 10²³

____________________________________________

~ For the Volume Occupied by Metal ::

\\\;\;\sf{:\rightarrow\;\;Density\;=\;\bf{\dfrac{Mass}{Volume}}}

\\\;\;\sf{:\rightarrow\;\;Volume\;=\;\bf{\dfrac{Mass}{Density}}}

\\\;\;\sf{:\rightarrow\;\;Volume\;=\;\bf{\dfrac{54.9}{7.42}}}

\\\;\;\sf{:\rightarrow\;\;Volume\;of\;metal\;=\;\bf{\green{7.40\;\;cm^{3}}}}

____________________________________________

~ For the Volume of each Atom of metal ::

We know that,

✒ Number of atoms = 6.022 × 10²³

Then,

\\\;\;\sf{:\Longrightarrow\;\;Volume\;of\;atom\;=\;\bf{\dfrac{Volume\;of\;Metal}{No.\;of\;Atoms}}}

\\\;\;\sf{:\Longrightarrow\;\;Volume\;of\;atom\;=\;\bf{\dfrac{7.40}{6.022\;\times\;10^{23}}}}

\\\;\;\sf{:\Longrightarrow\;\;Volume\;of\;atom\;=\;\bf{\pink{1.23\;\times\;10^{-23}\;\;cm^{3}}}}

____________________________________________

~ For Radius of each Spherical Atom ::

• Let the radius of the atom be 'r' cm.

\\\;\;\sf{:\Longrightarrow\;\;Volume\;of\;Sphere\;=\bf{\dfrac{4}{3}\:\pi r^{3}}}

\\\;\;\sf{:\Longrightarrow\;\;Volume\;of\;atom\;=\bf{\dfrac{4}{3}\:\pi r^{3}}}

\\\;\;\sf{:\Longrightarrow\;\;\dfrac{4}{3}\:\times\:\dfrac{22}{7}\:r^{3}\;=\;\bf{1.23\;\times\;10^{-23}}}

\\\;\;\sf{:\Longrightarrow\;\;r^{3}\;=\;\bf{\dfrac{7\;\times\;3\;\times\;1.23\;\times\;10^{-23}}{4\;\times\;22}}}

\\\;\;\sf{:\Longrightarrow\;\;r^{3}\;=\;\bf{0.3\;\times\;10^{-23}}}

\\\;\;\sf{:\Longrightarrow\;\;r\;=\;\bf{\sqrt[3]{0.3\;\times\;10^{-23}}}}

\\\;\;\sf{:\Longrightarrow\;\;r\;=\;\bf{0.67\;\times\;2.2\;\times\;10^{-8}}}

\\\;\;\sf{:\Longrightarrow\;\;r\;=\;\bf{\red{1.474\;\times\;10^{-8}\;cm}}}

\\\;\underline{\boxed{\tt{Hence,\;\;radius\;\;of\;\;atom\;\;=\;\bf{\purple{1.474\;\times\;10^{-8}\;cm}}}}}

____________________________________________

More to know :-

\\\;\sf{\leadsto\;\;Molarity\;=\;\dfrac{No.\;of\;Moles}{Volume\;of\;Solution}}

\\\;\sf{\leadsto\;\;Molarity\;=\;\dfrac{No.\;of\;Moles}{Mass\;of\;Solvent}}

\\\;\sf{\leadsto\;\;Mass\;per\;cent\;=\;\dfrac{Mass\;of\;Solute}{Mass\;of\;Solution}\;\times\;100}

Similar questions