Math, asked by shivam977573, 11 months ago

A metal pipe is 77 cm long.The inner diameter of a cross section is 4 cm the outer diameter being 4.4 cm find it's
(I) Inner curved surface area.
(ii) Outer curved surface area.
(iii) Total surface area.​

Answers

Answered by sourya1794
15

{\bold{\pink{\underline{\red{So}\purple{lut}\green{ion}\orange{:-}}}}}

\bf\boxed\star\pink{\underline{\underline{{(i)\:Inner\: Curved\: Surface\:area}}}}

\bf\:Given,

\bf\: Diameter=4\:cm

\bf\:radius=\dfrac{Diameter}{2}

\bf\:radius=\dfrac{4}{2}=2\:cm

\bf\: height=77\:cm

\bf\:Inner\:C.\:S.\:A=2\pi{rh}

\bf\:Inner\:C.\:S.\:A=2\times\dfrac{22}{7}\times\:2\times\:77\:c{m}^{2}

\bf\:Inner\:C.\:S.\:A=2\times\:22\times\:2\times\:11\:c{m}^{2}

\bf\:Inner\:C.\:S.\:A=968\:c{m}^{2}

\bf\boxed\star\orange{\underline{\underline{{(ii)\:Outer\: Curved\: Surface\:area}}}}

\bf\:Given,

\bf\: Diameter=4.4\:cm

\bf\:radius=\dfrac{Diameter}{2}

\bf\:radius=\dfrac{4.4}{2}=2.2\:cm

\bf\: height=77\:cm

\bf\:Outer\:C.\:S.\:A=2\pi{rh}

\bf\:Outer\:C.\:S.\:A=2\times\dfrac{22}{7}\times\:2.2\times\:77\:c{m}^{2}

\bf\:Outer\:C.\:S.\:A=2\times\:22\times\:2.2\times\:11\:c{m}^{2}

\bf\:Outer\:C.\:S.\:A=1064.80\:c{m}^{2}

\bf\boxed\star\blue{\underline{\underline{{(iii)\:Total\: Surface\:area}}}}

\bf\: Given,

\bf\:R=2.2\:cm

\bf\:r=2\:cm

\bf\:h=77\:cm

\bf\:Area\:of\:upper\:ring=\pi({R}^{2}-{r}^{2})

\bf\: Area\:of\:upper\:ring=\dfrac{22}{7}\times\:{(2.2)}^{2}-{(2)}^{2}\:c{m}^{2}

\bf\: Area\:of\:upper\:ring=\dfrac{22}{7}\times\:4.84-4\:c{m}^{2}

\bf\: Area\:of\:upper\:ring=22\times\:0.12\:c{m}^{2}

\bf\: Area\:of\:upper\:ring=2.64\:c{m}^{2}

\bf\: Area\:of\:lower\:ring=2.64\:c{m}^{2}

\bf\:T.S.A=Inner\:C.S.A+Outer\:C.S.A+Area\:of\:lower\:ring+Area\:of\:upper\:ring

\bf\:T.S.A= 968+1064.80+2.64+2.64

\bf\:T.S.A=2038.08\:c{m}^{2}

Answered by Blossomfairy
10

i) Inner curved surface area

Given :

  • Height (h) = 77 cm
  • Diameter 1 = 4 cm

When we convert it in radius 1 :-

r = d ÷ 2

r = 4 cm ÷ 2 = 2 cm

  • Diameter 2 = 4.4 cm

Again we will concert it in radius 2 :-

r= d ÷ 2

r = 4.4 cm ÷ 2 = 2.2 cm

According to the question,

Inner curved surface area = \sf{2 \pi rh}

 \rightarrow \sf{2 \times  \frac{22}{7} \times 2 \times 77 } \\  \rightarrow \sf \red{368 \: {cm}^{2}  }

__________________.....

ii)Outer curved surface area

Given :

  • Height = 77 cm
  • Radius 2 = 2.2 cm

According to the question,

Outer curved surface area = \sf{2 \pi rh}

 \rightarrow \sf{2 \times  \frac{22}{7} \times 2.2\times 77 } \\  \rightarrow \sf \red{1064.8 \: {cm}^{2}  }

___________________....

iii) Total surface area

Total surface area of pipe = CSA of inner surface area + CSA of outer surface area + Area of both circular ends of pipe

 \rightarrow \sf{2 \pi r _{1} h} + {2 \pi r _{2} h} + 2 \pi ( {{r} \: ^{2}_{2} +{r} \: ^{2}_{1 }}) \\  \rightarrow \sf{968 + 1064.8 + 2 \pi ( {2.2)}^{2}  + {(2)}^{2} } \\  \rightarrow \sf{(2032.8 + 2 \times  \frac{22}{7} \times 0.84) } {cm}^{2}  \\  \rightarrow \sf{(2032.8 + 5.28) {cm}^{2} } \\  \therefore \sf \red{2038.08 { \: cm}^{2} }

Similar questions